Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366427229> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4366427229 abstract "The extraction of gas-bearing information from the deeply underground reservoir is extremely difficult due to the weak seismic response and complicated gas distribution characteristics. To predict gas-bearing reservoirs efficiently, we developed a deep neural network (DNN) embedding-based gas-bearing prediction scheme. First, the cepstrum coefficient that is sensitive to hydrocarbons is computed using the raw seismic data. A DNN model inspired by the x-vector in speech recognition is designed, comprising the long short-term memory (LSTM) networks and two fully connected (FC) networks, stacked from the bottom to the top layer. Then, the cepstrum features are fed into the DNN for training and testing, and DNN embedding is extracted from the top layers after optimized network parameters are determined. Finally, the gas-bearing probability of the reservoir is predicted by calculating the cosine distance between pairs of DNN embeddings. When applied to synthetic seismic data, the proposed method offers greater than 90% accuracy at SNR > 3 dB. Besides, the predicted result applied in deep carbonate reservoirs in China’s Sichuan Basin is in basic agreement with the actual situation, demonstrating the certain feasibility of the proposed scheme." @default.
- W4366427229 created "2023-04-21" @default.
- W4366427229 creator A5025137303 @default.
- W4366427229 creator A5030005269 @default.
- W4366427229 creator A5033196706 @default.
- W4366427229 creator A5034933507 @default.
- W4366427229 creator A5080188851 @default.
- W4366427229 creator A5087686703 @default.
- W4366427229 date "2023-04-19" @default.
- W4366427229 modified "2023-09-27" @default.
- W4366427229 title "Gas-bearing prediction of deep reservoir based on DNN embeddings" @default.
- W4366427229 cites W2030453751 @default.
- W4366427229 cites W2033240004 @default.
- W4366427229 cites W2052384514 @default.
- W4366427229 cites W2060136239 @default.
- W4366427229 cites W2068912944 @default.
- W4366427229 cites W2074406042 @default.
- W4366427229 cites W2081734214 @default.
- W4366427229 cites W2084200478 @default.
- W4366427229 cites W2171923309 @default.
- W4366427229 cites W2301209603 @default.
- W4366427229 cites W2600346920 @default.
- W4366427229 cites W2748488820 @default.
- W4366427229 cites W2890964092 @default.
- W4366427229 cites W2955869164 @default.
- W4366427229 cites W2995934841 @default.
- W4366427229 cites W3042090478 @default.
- W4366427229 cites W3106541595 @default.
- W4366427229 cites W3120684150 @default.
- W4366427229 cites W3153686975 @default.
- W4366427229 cites W3155564877 @default.
- W4366427229 cites W3159353186 @default.
- W4366427229 cites W4214488423 @default.
- W4366427229 cites W4281766894 @default.
- W4366427229 cites W4283751516 @default.
- W4366427229 cites W4285211467 @default.
- W4366427229 doi "https://doi.org/10.3389/feart.2023.1117797" @default.
- W4366427229 hasPublicationYear "2023" @default.
- W4366427229 type Work @default.
- W4366427229 citedByCount "0" @default.
- W4366427229 crossrefType "journal-article" @default.
- W4366427229 hasAuthorship W4366427229A5025137303 @default.
- W4366427229 hasAuthorship W4366427229A5030005269 @default.
- W4366427229 hasAuthorship W4366427229A5033196706 @default.
- W4366427229 hasAuthorship W4366427229A5034933507 @default.
- W4366427229 hasAuthorship W4366427229A5080188851 @default.
- W4366427229 hasAuthorship W4366427229A5087686703 @default.
- W4366427229 hasBestOaLocation W43664272291 @default.
- W4366427229 hasConcept C127162648 @default.
- W4366427229 hasConcept C127313418 @default.
- W4366427229 hasConcept C153180895 @default.
- W4366427229 hasConcept C154945302 @default.
- W4366427229 hasConcept C178009071 @default.
- W4366427229 hasConcept C199978012 @default.
- W4366427229 hasConcept C2524010 @default.
- W4366427229 hasConcept C31258907 @default.
- W4366427229 hasConcept C33923547 @default.
- W4366427229 hasConcept C41008148 @default.
- W4366427229 hasConcept C41608201 @default.
- W4366427229 hasConcept C50644808 @default.
- W4366427229 hasConcept C88485024 @default.
- W4366427229 hasConceptScore W4366427229C127162648 @default.
- W4366427229 hasConceptScore W4366427229C127313418 @default.
- W4366427229 hasConceptScore W4366427229C153180895 @default.
- W4366427229 hasConceptScore W4366427229C154945302 @default.
- W4366427229 hasConceptScore W4366427229C178009071 @default.
- W4366427229 hasConceptScore W4366427229C199978012 @default.
- W4366427229 hasConceptScore W4366427229C2524010 @default.
- W4366427229 hasConceptScore W4366427229C31258907 @default.
- W4366427229 hasConceptScore W4366427229C33923547 @default.
- W4366427229 hasConceptScore W4366427229C41008148 @default.
- W4366427229 hasConceptScore W4366427229C41608201 @default.
- W4366427229 hasConceptScore W4366427229C50644808 @default.
- W4366427229 hasConceptScore W4366427229C88485024 @default.
- W4366427229 hasLocation W43664272291 @default.
- W4366427229 hasOpenAccess W4366427229 @default.
- W4366427229 hasPrimaryLocation W43664272291 @default.
- W4366427229 hasRelatedWork W2033914206 @default.
- W4366427229 hasRelatedWork W2046077695 @default.
- W4366427229 hasRelatedWork W2055709700 @default.
- W4366427229 hasRelatedWork W2146076056 @default.
- W4366427229 hasRelatedWork W2163831990 @default.
- W4366427229 hasRelatedWork W2351950574 @default.
- W4366427229 hasRelatedWork W2386387936 @default.
- W4366427229 hasRelatedWork W3003836766 @default.
- W4366427229 hasRelatedWork W3173779316 @default.
- W4366427229 hasRelatedWork W4285378741 @default.
- W4366427229 hasVolume "11" @default.
- W4366427229 isParatext "false" @default.
- W4366427229 isRetracted "false" @default.
- W4366427229 workType "article" @default.