Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366429301> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4366429301 abstract "Abstract In this work, we study the numerical solution for time fractional Black-Scholes model under jump-diffusion involving a Caputo differential operator. For simplicity of the analysis, the model problem is converted into a time fractional partial integro-differential equation with a Fredholm integral operator. The L1 discretization is introduced on a graded mesh to approximate the temporal derivative. A second order central difference scheme is used to replace the spatial derivatives and the composite trapezoidal approximation is employed to discretize the integral part. The stability results for the proposed numerical scheme are derived with a sharp error estimation. A rigorous analysis proves that the optimal rate of convergence is obtained for a suitable choice of the grading parameter. Further, we introduce the Adomian decomposition method to find out an analytical approximate solution of the given model and the results are compared with the numerical solutions. The main advantage of the fully discretized numerical method is that it not only resolves the initial singularity occurred due to the presence of the fractional operator, but it also gives a higher rate of convergence compared to the uniform mesh. On the other hand, the Adomian decomposition method gives the analytical solution as well as a numerical approximation of the solution which does not involve any mesh discretization. Furthermore, the method does not require a large amount of computer memory and is free of rounding errors. Some experiments are performed for both methods and it is shown that the results agree well with the theoretical findings. In addition, the proposed schemes are investigated on numerous European option pricing jump-diffusion models such as Merton’s jump-diffusion and Kou’s jump-diffusion for both European call and put options." @default.
- W4366429301 created "2023-04-21" @default.
- W4366429301 creator A5005180650 @default.
- W4366429301 creator A5025767351 @default.
- W4366429301 creator A5048320006 @default.
- W4366429301 date "2023-04-19" @default.
- W4366429301 modified "2023-09-30" @default.
- W4366429301 title "Analytical and Numerical Solution for the Time Fractional Black-Scholes Model Under Jump-Diffusion" @default.
- W4366429301 cites W1940115485 @default.
- W4366429301 cites W2012698396 @default.
- W4366429301 cites W2045231411 @default.
- W4366429301 cites W2061802455 @default.
- W4366429301 cites W2135352310 @default.
- W4366429301 cites W2141635952 @default.
- W4366429301 cites W2151065060 @default.
- W4366429301 cites W2562870422 @default.
- W4366429301 cites W2566489497 @default.
- W4366429301 cites W2608656286 @default.
- W4366429301 cites W2733082216 @default.
- W4366429301 cites W2766008418 @default.
- W4366429301 cites W2770641614 @default.
- W4366429301 cites W2911520138 @default.
- W4366429301 cites W2911559955 @default.
- W4366429301 cites W2913272652 @default.
- W4366429301 cites W2947202820 @default.
- W4366429301 cites W2978166210 @default.
- W4366429301 cites W2989202487 @default.
- W4366429301 cites W3000618690 @default.
- W4366429301 cites W3029404725 @default.
- W4366429301 cites W3045927972 @default.
- W4366429301 cites W3083467515 @default.
- W4366429301 cites W3097296748 @default.
- W4366429301 cites W3102620729 @default.
- W4366429301 cites W3121640468 @default.
- W4366429301 cites W3122167020 @default.
- W4366429301 cites W3139055858 @default.
- W4366429301 cites W3163975797 @default.
- W4366429301 cites W3183845754 @default.
- W4366429301 cites W3184571463 @default.
- W4366429301 cites W3193391009 @default.
- W4366429301 cites W3215448157 @default.
- W4366429301 cites W4205090771 @default.
- W4366429301 cites W4247953052 @default.
- W4366429301 doi "https://doi.org/10.1007/s10614-023-10386-3" @default.
- W4366429301 hasPublicationYear "2023" @default.
- W4366429301 type Work @default.
- W4366429301 citedByCount "0" @default.
- W4366429301 crossrefType "journal-article" @default.
- W4366429301 hasAuthorship W4366429301A5005180650 @default.
- W4366429301 hasAuthorship W4366429301A5025767351 @default.
- W4366429301 hasAuthorship W4366429301A5048320006 @default.
- W4366429301 hasBestOaLocation W43664293011 @default.
- W4366429301 hasConcept C127162648 @default.
- W4366429301 hasConcept C134306372 @default.
- W4366429301 hasConcept C154249771 @default.
- W4366429301 hasConcept C28826006 @default.
- W4366429301 hasConcept C31258907 @default.
- W4366429301 hasConcept C33923547 @default.
- W4366429301 hasConcept C41008148 @default.
- W4366429301 hasConcept C48753275 @default.
- W4366429301 hasConcept C57869625 @default.
- W4366429301 hasConcept C73000952 @default.
- W4366429301 hasConceptScore W4366429301C127162648 @default.
- W4366429301 hasConceptScore W4366429301C134306372 @default.
- W4366429301 hasConceptScore W4366429301C154249771 @default.
- W4366429301 hasConceptScore W4366429301C28826006 @default.
- W4366429301 hasConceptScore W4366429301C31258907 @default.
- W4366429301 hasConceptScore W4366429301C33923547 @default.
- W4366429301 hasConceptScore W4366429301C41008148 @default.
- W4366429301 hasConceptScore W4366429301C48753275 @default.
- W4366429301 hasConceptScore W4366429301C57869625 @default.
- W4366429301 hasConceptScore W4366429301C73000952 @default.
- W4366429301 hasFunder F4320328269 @default.
- W4366429301 hasLocation W43664293011 @default.
- W4366429301 hasOpenAccess W4366429301 @default.
- W4366429301 hasPrimaryLocation W43664293011 @default.
- W4366429301 hasRelatedWork W192394797 @default.
- W4366429301 hasRelatedWork W2082186803 @default.
- W4366429301 hasRelatedWork W2556186148 @default.
- W4366429301 hasRelatedWork W2780890758 @default.
- W4366429301 hasRelatedWork W3123568166 @default.
- W4366429301 hasRelatedWork W3151491349 @default.
- W4366429301 hasRelatedWork W3174080020 @default.
- W4366429301 hasRelatedWork W4212903685 @default.
- W4366429301 hasRelatedWork W4226238329 @default.
- W4366429301 hasRelatedWork W4376508842 @default.
- W4366429301 isParatext "false" @default.
- W4366429301 isRetracted "false" @default.
- W4366429301 workType "article" @default.