Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366442967> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4366442967 endingPage "e43896" @default.
- W4366442967 startingPage "e43896" @default.
- W4366442967 abstract "Background Artificial intelligence (AI) applications offer numerous opportunities to improve health care. To be used in the intensive care unit, AI must meet the needs of staff, and potential barriers must be addressed through joint action by all stakeholders. It is thus critical to assess the needs and concerns of anesthesiologists and intensive care physicians related to AI in health care throughout Europe. Objective This Europe-wide, cross-sectional observational study investigates how potential users of AI systems in anesthesiology and intensive care assess the opportunities and risks of the new technology. The web-based questionnaire was based on the established analytic model of acceptance of innovations by Rogers to record 5 stages of innovation acceptance. Methods The questionnaire was sent twice in 2 months (March 11, 2021, and November 5, 2021) through the European Society of Anaesthesiology and Intensive Care (ESAIC) member email distribution list. A total of 9294 ESAIC members were reached, of whom 728 filled out the questionnaire (response rate 728/9294, 8%). Due to missing data, 27 questionnaires were excluded. The analyses were conducted with 701 participants. Results A total of 701 questionnaires (female: n=299, 42%) were analyzed. Overall, 265 (37.8%) of the participants have been in contact with AI and evaluated the benefits of this technology higher (mean 3.22, SD 0.39) than participants who stated no previous contact (mean 3.01, SD 0.48). Physicians see the most benefits of AI application in early warning systems (335/701, 48% strongly agreed, and 358/701, 51% agreed). Major potential disadvantages were technical problems (236/701, 34% strongly agreed, and 410/701, 58% agreed) and handling difficulties (126/701, 18% strongly agreed, and 462/701, 66% agreed), both of which could be addressed by Europe-wide digitalization and education. In addition, the lack of a secure legal basis for the research and use of medical AI in the European Union leads doctors to expect problems with legal liability (186/701, 27% strongly agreed, and 374/701, 53% agreed) and data protection (148/701, 21% strongly agreed, and 343/701, 49% agreed). Conclusions Anesthesiologists and intensive care personnel are open to AI applications in their professional field and expect numerous benefits for staff and patients. Regional differences in the digitalization of the private sector are not reflected in the acceptance of AI among health care professionals. Physicians anticipate technical difficulties and lack a stable legal basis for the use of AI. Training for medical staff could increase the benefits of AI in professional medicine. Therefore, we suggest that the development and implementation of AI in health care require a solid technical, legal, and ethical basis, as well as adequate education and training of users." @default.
- W4366442967 created "2023-04-21" @default.
- W4366442967 creator A5004366904 @default.
- W4366442967 creator A5008447327 @default.
- W4366442967 creator A5045558166 @default.
- W4366442967 creator A5065385466 @default.
- W4366442967 creator A5085933407 @default.
- W4366442967 creator A5090520917 @default.
- W4366442967 date "2023-06-12" @default.
- W4366442967 modified "2023-10-18" @default.
- W4366442967 title "Expectations of Anesthesiology and Intensive Care Professionals Toward Artificial Intelligence: Observational Study" @default.
- W4366442967 cites W1493524810 @default.
- W4366442967 cites W2051576146 @default.
- W4366442967 cites W2262715205 @default.
- W4366442967 cites W2401520370 @default.
- W4366442967 cites W2765304416 @default.
- W4366442967 cites W2787653820 @default.
- W4366442967 cites W2789045531 @default.
- W4366442967 cites W2803760365 @default.
- W4366442967 cites W2807593075 @default.
- W4366442967 cites W2855469196 @default.
- W4366442967 cites W2908201961 @default.
- W4366442967 cites W2947151330 @default.
- W4366442967 cites W2969075152 @default.
- W4366442967 cites W2969097171 @default.
- W4366442967 cites W2970107881 @default.
- W4366442967 cites W3000576676 @default.
- W4366442967 cites W3012662704 @default.
- W4366442967 cites W3038043535 @default.
- W4366442967 cites W3135696500 @default.
- W4366442967 cites W3154790864 @default.
- W4366442967 cites W3164057767 @default.
- W4366442967 cites W3182629524 @default.
- W4366442967 cites W4200555563 @default.
- W4366442967 cites W4225405007 @default.
- W4366442967 cites W4241594189 @default.
- W4366442967 cites W4312068811 @default.
- W4366442967 doi "https://doi.org/10.2196/43896" @default.
- W4366442967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37307038" @default.
- W4366442967 hasPublicationYear "2023" @default.
- W4366442967 type Work @default.
- W4366442967 citedByCount "0" @default.
- W4366442967 crossrefType "journal-article" @default.
- W4366442967 hasAuthorship W4366442967A5004366904 @default.
- W4366442967 hasAuthorship W4366442967A5008447327 @default.
- W4366442967 hasAuthorship W4366442967A5045558166 @default.
- W4366442967 hasAuthorship W4366442967A5065385466 @default.
- W4366442967 hasAuthorship W4366442967A5085933407 @default.
- W4366442967 hasAuthorship W4366442967A5090520917 @default.
- W4366442967 hasBestOaLocation W43664429671 @default.
- W4366442967 hasConcept C118552586 @default.
- W4366442967 hasConcept C142724271 @default.
- W4366442967 hasConcept C15744967 @default.
- W4366442967 hasConcept C159110408 @default.
- W4366442967 hasConcept C160735492 @default.
- W4366442967 hasConcept C162324750 @default.
- W4366442967 hasConcept C177713679 @default.
- W4366442967 hasConcept C23131810 @default.
- W4366442967 hasConcept C2776376669 @default.
- W4366442967 hasConcept C2779526319 @default.
- W4366442967 hasConcept C2987404301 @default.
- W4366442967 hasConcept C50522688 @default.
- W4366442967 hasConcept C512399662 @default.
- W4366442967 hasConcept C71924100 @default.
- W4366442967 hasConceptScore W4366442967C118552586 @default.
- W4366442967 hasConceptScore W4366442967C142724271 @default.
- W4366442967 hasConceptScore W4366442967C15744967 @default.
- W4366442967 hasConceptScore W4366442967C159110408 @default.
- W4366442967 hasConceptScore W4366442967C160735492 @default.
- W4366442967 hasConceptScore W4366442967C162324750 @default.
- W4366442967 hasConceptScore W4366442967C177713679 @default.
- W4366442967 hasConceptScore W4366442967C23131810 @default.
- W4366442967 hasConceptScore W4366442967C2776376669 @default.
- W4366442967 hasConceptScore W4366442967C2779526319 @default.
- W4366442967 hasConceptScore W4366442967C2987404301 @default.
- W4366442967 hasConceptScore W4366442967C50522688 @default.
- W4366442967 hasConceptScore W4366442967C512399662 @default.
- W4366442967 hasConceptScore W4366442967C71924100 @default.
- W4366442967 hasLocation W43664429671 @default.
- W4366442967 hasLocation W43664429672 @default.
- W4366442967 hasLocation W43664429673 @default.
- W4366442967 hasOpenAccess W4366442967 @default.
- W4366442967 hasPrimaryLocation W43664429671 @default.
- W4366442967 hasRelatedWork W2021326941 @default.
- W4366442967 hasRelatedWork W2109669038 @default.
- W4366442967 hasRelatedWork W2128492239 @default.
- W4366442967 hasRelatedWork W2735595277 @default.
- W4366442967 hasRelatedWork W2900519977 @default.
- W4366442967 hasRelatedWork W2922553863 @default.
- W4366442967 hasRelatedWork W3045647547 @default.
- W4366442967 hasRelatedWork W3093740117 @default.
- W4366442967 hasRelatedWork W3126697207 @default.
- W4366442967 hasRelatedWork W4229721409 @default.
- W4366442967 hasVolume "7" @default.
- W4366442967 isParatext "false" @default.
- W4366442967 isRetracted "false" @default.
- W4366442967 workType "article" @default.