Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366448434> ?p ?o ?g. }
- W4366448434 endingPage "15941" @default.
- W4366448434 startingPage "15923" @default.
- W4366448434 abstract "The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others." @default.
- W4366448434 created "2023-04-22" @default.
- W4366448434 creator A5003975347 @default.
- W4366448434 creator A5024473397 @default.
- W4366448434 creator A5029512928 @default.
- W4366448434 creator A5058957048 @default.
- W4366448434 creator A5062826520 @default.
- W4366448434 creator A5081678536 @default.
- W4366448434 creator A5085661326 @default.
- W4366448434 date "2023-04-19" @default.
- W4366448434 modified "2023-09-30" @default.
- W4366448434 title "Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks" @default.
- W4366448434 cites W1490180010 @default.
- W4366448434 cites W1925854681 @default.
- W4366448434 cites W1969487735 @default.
- W4366448434 cites W1974000237 @default.
- W4366448434 cites W1975673322 @default.
- W4366448434 cites W1977113083 @default.
- W4366448434 cites W1978506732 @default.
- W4366448434 cites W1986760892 @default.
- W4366448434 cites W1993885071 @default.
- W4366448434 cites W1995341919 @default.
- W4366448434 cites W2002302337 @default.
- W4366448434 cites W2008607241 @default.
- W4366448434 cites W2033731173 @default.
- W4366448434 cites W2037916273 @default.
- W4366448434 cites W2042656126 @default.
- W4366448434 cites W2050546928 @default.
- W4366448434 cites W2070448096 @default.
- W4366448434 cites W2072441291 @default.
- W4366448434 cites W2076063813 @default.
- W4366448434 cites W2081094777 @default.
- W4366448434 cites W2085054178 @default.
- W4366448434 cites W2130372754 @default.
- W4366448434 cites W2130459697 @default.
- W4366448434 cites W2133170554 @default.
- W4366448434 cites W2151554678 @default.
- W4366448434 cites W2152195021 @default.
- W4366448434 cites W2168294619 @default.
- W4366448434 cites W2169279815 @default.
- W4366448434 cites W2216979581 @default.
- W4366448434 cites W2232317135 @default.
- W4366448434 cites W2286295202 @default.
- W4366448434 cites W2316060816 @default.
- W4366448434 cites W2418764753 @default.
- W4366448434 cites W2541011702 @default.
- W4366448434 cites W2560915999 @default.
- W4366448434 cites W2588031254 @default.
- W4366448434 cites W2625776493 @default.
- W4366448434 cites W2731155719 @default.
- W4366448434 cites W2735447725 @default.
- W4366448434 cites W2769293273 @default.
- W4366448434 cites W2774411766 @default.
- W4366448434 cites W2801019927 @default.
- W4366448434 cites W2885191712 @default.
- W4366448434 cites W2891894013 @default.
- W4366448434 cites W2901312569 @default.
- W4366448434 cites W2905396678 @default.
- W4366448434 cites W2907227550 @default.
- W4366448434 cites W2933176268 @default.
- W4366448434 cites W2959010962 @default.
- W4366448434 cites W2963103847 @default.
- W4366448434 cites W2977166605 @default.
- W4366448434 cites W2989005637 @default.
- W4366448434 cites W2995882507 @default.
- W4366448434 cites W3082974932 @default.
- W4366448434 cites W3100933494 @default.
- W4366448434 cites W3119218154 @default.
- W4366448434 cites W3160515061 @default.
- W4366448434 cites W3197754820 @default.
- W4366448434 cites W4206425993 @default.
- W4366448434 cites W4210996398 @default.
- W4366448434 cites W4226264782 @default.
- W4366448434 cites W4306940456 @default.
- W4366448434 doi "https://doi.org/10.1007/s00521-023-08577-y" @default.
- W4366448434 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37273914" @default.
- W4366448434 hasPublicationYear "2023" @default.
- W4366448434 type Work @default.
- W4366448434 citedByCount "0" @default.
- W4366448434 crossrefType "journal-article" @default.
- W4366448434 hasAuthorship W4366448434A5003975347 @default.
- W4366448434 hasAuthorship W4366448434A5024473397 @default.
- W4366448434 hasAuthorship W4366448434A5029512928 @default.
- W4366448434 hasAuthorship W4366448434A5058957048 @default.
- W4366448434 hasAuthorship W4366448434A5062826520 @default.
- W4366448434 hasAuthorship W4366448434A5081678536 @default.
- W4366448434 hasAuthorship W4366448434A5085661326 @default.
- W4366448434 hasBestOaLocation W43664484341 @default.
- W4366448434 hasConcept C106192422 @default.
- W4366448434 hasConcept C109718341 @default.
- W4366448434 hasConcept C11413529 @default.
- W4366448434 hasConcept C119487961 @default.
- W4366448434 hasConcept C119857082 @default.
- W4366448434 hasConcept C144024400 @default.
- W4366448434 hasConcept C149923435 @default.
- W4366448434 hasConcept C153258448 @default.
- W4366448434 hasConcept C154945302 @default.
- W4366448434 hasConcept C162324750 @default.