Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366457940> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4366457940 abstract "Weather forecasting is a long-standing computational challenge with direct societal and economic impacts. This task involves a large amount of continuous data collection and exhibits rich spatiotemporal dependencies over long periods, making it highly suitable for deep learning models. In this paper, we apply pre-training techniques to weather forecasting and propose W-MAE, a Weather model with Masked AutoEncoder pre-training for multi-variable weather forecasting. W-MAE is pre-trained in a self-supervised manner to reconstruct spatial correlations within meteorological variables. On the temporal scale, we fine-tune the pre-trained W-MAE to predict the future states of meteorological variables, thereby modeling the temporal dependencies present in weather data. We pre-train W-MAE using the fifth-generation ECMWF Reanalysis (ERA5) data, with samples selected every six hours and using only two years of data. Under the same training data conditions, we compare W-MAE with FourCastNet, and W-MAE outperforms FourCastNet in precipitation forecasting. In the setting where the training data is far less than that of FourCastNet, our model still performs much better in precipitation prediction (0.80 vs. 0.98). Additionally, experiments show that our model has a stable and significant advantage in short-to-medium-range forecasting (i.e., forecasting time ranges from 6 hours to one week), and the longer the prediction time, the more evident the performance advantage of W-MAE, further proving its robustness." @default.
- W4366457940 created "2023-04-22" @default.
- W4366457940 creator A5065932618 @default.
- W4366457940 creator A5072350518 @default.
- W4366457940 creator A5075552558 @default.
- W4366457940 creator A5083301034 @default.
- W4366457940 date "2023-04-18" @default.
- W4366457940 modified "2023-09-25" @default.
- W4366457940 title "W-MAE: Pre-trained weather model with masked autoencoder for multi-variable weather forecasting" @default.
- W4366457940 doi "https://doi.org/10.48550/arxiv.2304.08754" @default.
- W4366457940 hasPublicationYear "2023" @default.
- W4366457940 type Work @default.
- W4366457940 citedByCount "0" @default.
- W4366457940 crossrefType "posted-content" @default.
- W4366457940 hasAuthorship W4366457940A5065932618 @default.
- W4366457940 hasAuthorship W4366457940A5072350518 @default.
- W4366457940 hasAuthorship W4366457940A5075552558 @default.
- W4366457940 hasAuthorship W4366457940A5083301034 @default.
- W4366457940 hasBestOaLocation W43664579401 @default.
- W4366457940 hasConcept C101738243 @default.
- W4366457940 hasConcept C104317684 @default.
- W4366457940 hasConcept C107054158 @default.
- W4366457940 hasConcept C108583219 @default.
- W4366457940 hasConcept C119857082 @default.
- W4366457940 hasConcept C127413603 @default.
- W4366457940 hasConcept C134306372 @default.
- W4366457940 hasConcept C140178040 @default.
- W4366457940 hasConcept C146978453 @default.
- W4366457940 hasConcept C153294291 @default.
- W4366457940 hasConcept C154945302 @default.
- W4366457940 hasConcept C182365436 @default.
- W4366457940 hasConcept C185592680 @default.
- W4366457940 hasConcept C204323151 @default.
- W4366457940 hasConcept C205649164 @default.
- W4366457940 hasConcept C21001229 @default.
- W4366457940 hasConcept C2987469573 @default.
- W4366457940 hasConcept C33923547 @default.
- W4366457940 hasConcept C39432304 @default.
- W4366457940 hasConcept C41008148 @default.
- W4366457940 hasConcept C51632099 @default.
- W4366457940 hasConcept C55493867 @default.
- W4366457940 hasConcept C63479239 @default.
- W4366457940 hasConceptScore W4366457940C101738243 @default.
- W4366457940 hasConceptScore W4366457940C104317684 @default.
- W4366457940 hasConceptScore W4366457940C107054158 @default.
- W4366457940 hasConceptScore W4366457940C108583219 @default.
- W4366457940 hasConceptScore W4366457940C119857082 @default.
- W4366457940 hasConceptScore W4366457940C127413603 @default.
- W4366457940 hasConceptScore W4366457940C134306372 @default.
- W4366457940 hasConceptScore W4366457940C140178040 @default.
- W4366457940 hasConceptScore W4366457940C146978453 @default.
- W4366457940 hasConceptScore W4366457940C153294291 @default.
- W4366457940 hasConceptScore W4366457940C154945302 @default.
- W4366457940 hasConceptScore W4366457940C182365436 @default.
- W4366457940 hasConceptScore W4366457940C185592680 @default.
- W4366457940 hasConceptScore W4366457940C204323151 @default.
- W4366457940 hasConceptScore W4366457940C205649164 @default.
- W4366457940 hasConceptScore W4366457940C21001229 @default.
- W4366457940 hasConceptScore W4366457940C2987469573 @default.
- W4366457940 hasConceptScore W4366457940C33923547 @default.
- W4366457940 hasConceptScore W4366457940C39432304 @default.
- W4366457940 hasConceptScore W4366457940C41008148 @default.
- W4366457940 hasConceptScore W4366457940C51632099 @default.
- W4366457940 hasConceptScore W4366457940C55493867 @default.
- W4366457940 hasConceptScore W4366457940C63479239 @default.
- W4366457940 hasLocation W43664579401 @default.
- W4366457940 hasOpenAccess W4366457940 @default.
- W4366457940 hasPrimaryLocation W43664579401 @default.
- W4366457940 hasRelatedWork W2060080007 @default.
- W4366457940 hasRelatedWork W2373173371 @default.
- W4366457940 hasRelatedWork W2467445977 @default.
- W4366457940 hasRelatedWork W2922457425 @default.
- W4366457940 hasRelatedWork W3044458868 @default.
- W4366457940 hasRelatedWork W3196088787 @default.
- W4366457940 hasRelatedWork W4213225422 @default.
- W4366457940 hasRelatedWork W4250304930 @default.
- W4366457940 hasRelatedWork W4289656111 @default.
- W4366457940 hasRelatedWork W4310034804 @default.
- W4366457940 isParatext "false" @default.
- W4366457940 isRetracted "false" @default.
- W4366457940 workType "article" @default.