Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366458452> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4366458452 abstract "Factor analysis (FA) or principal component analysis (PCA) models the covariance matrix of the observed data as R = SS' + {Sigma}, where SS' is the low-rank covariance matrix of the factors (aka latent variables) and {Sigma} is the diagonal matrix of the noise. When the noise is anisotropic (aka nonuniform in the signal processing literature and heteroscedastic in the statistical literature), the diagonal elements of {Sigma} cannot be assumed to be identical and they must be estimated jointly with the elements of SS'. The problem of estimating SS' and {Sigma} in the above covariance model is the central theme of the present paper. After stating this problem in a more formal way, we review the main existing algorithms for solving it. We then go on to show that these algorithms have reliability issues (such as lack of convergence or convergence to infeasible solutions) and therefore they may not be the best possible choice for practical applications. Next we explain how to modify one of these algorithms to improve its convergence properties and we also introduce a new method that we call FAAN (Factor Analysis for Anisotropic Noise). FAAN is a coordinate descent algorithm that iteratively maximizes the normal likelihood function, which is easy to implement in a numerically efficient manner and has excellent convergence properties as illustrated by the numerical examples presented in the paper. Out of the many possible applications of FAAN we focus on the following two: direction-of-arrival (DOA) estimation using array signal processing techniques and portfolio selection for financial asset management." @default.
- W4366458452 created "2023-04-22" @default.
- W4366458452 creator A5007877889 @default.
- W4366458452 creator A5012466580 @default.
- W4366458452 date "2023-04-18" @default.
- W4366458452 modified "2023-09-25" @default.
- W4366458452 title "Low-rank covariance matrix estimation for factor analysis in anisotropic noise: application to array processing and portfolio selection" @default.
- W4366458452 doi "https://doi.org/10.48550/arxiv.2304.08813" @default.
- W4366458452 hasPublicationYear "2023" @default.
- W4366458452 type Work @default.
- W4366458452 citedByCount "0" @default.
- W4366458452 crossrefType "posted-content" @default.
- W4366458452 hasAuthorship W4366458452A5007877889 @default.
- W4366458452 hasAuthorship W4366458452A5012466580 @default.
- W4366458452 hasConcept C113313756 @default.
- W4366458452 hasConcept C11413529 @default.
- W4366458452 hasConcept C114614502 @default.
- W4366458452 hasConcept C115961682 @default.
- W4366458452 hasConcept C126255220 @default.
- W4366458452 hasConcept C130367717 @default.
- W4366458452 hasConcept C154945302 @default.
- W4366458452 hasConcept C157553263 @default.
- W4366458452 hasConcept C162324750 @default.
- W4366458452 hasConcept C164226766 @default.
- W4366458452 hasConcept C172051844 @default.
- W4366458452 hasConcept C180877172 @default.
- W4366458452 hasConcept C185142706 @default.
- W4366458452 hasConcept C21822782 @default.
- W4366458452 hasConcept C2524010 @default.
- W4366458452 hasConcept C2777303404 @default.
- W4366458452 hasConcept C33923547 @default.
- W4366458452 hasConcept C41008148 @default.
- W4366458452 hasConcept C50522688 @default.
- W4366458452 hasConcept C76155785 @default.
- W4366458452 hasConcept C99498987 @default.
- W4366458452 hasConceptScore W4366458452C113313756 @default.
- W4366458452 hasConceptScore W4366458452C11413529 @default.
- W4366458452 hasConceptScore W4366458452C114614502 @default.
- W4366458452 hasConceptScore W4366458452C115961682 @default.
- W4366458452 hasConceptScore W4366458452C126255220 @default.
- W4366458452 hasConceptScore W4366458452C130367717 @default.
- W4366458452 hasConceptScore W4366458452C154945302 @default.
- W4366458452 hasConceptScore W4366458452C157553263 @default.
- W4366458452 hasConceptScore W4366458452C162324750 @default.
- W4366458452 hasConceptScore W4366458452C164226766 @default.
- W4366458452 hasConceptScore W4366458452C172051844 @default.
- W4366458452 hasConceptScore W4366458452C180877172 @default.
- W4366458452 hasConceptScore W4366458452C185142706 @default.
- W4366458452 hasConceptScore W4366458452C21822782 @default.
- W4366458452 hasConceptScore W4366458452C2524010 @default.
- W4366458452 hasConceptScore W4366458452C2777303404 @default.
- W4366458452 hasConceptScore W4366458452C33923547 @default.
- W4366458452 hasConceptScore W4366458452C41008148 @default.
- W4366458452 hasConceptScore W4366458452C50522688 @default.
- W4366458452 hasConceptScore W4366458452C76155785 @default.
- W4366458452 hasConceptScore W4366458452C99498987 @default.
- W4366458452 hasLocation W43664584521 @default.
- W4366458452 hasOpenAccess W4366458452 @default.
- W4366458452 hasPrimaryLocation W43664584521 @default.
- W4366458452 hasRelatedWork W2031550266 @default.
- W4366458452 hasRelatedWork W2064842377 @default.
- W4366458452 hasRelatedWork W2066210985 @default.
- W4366458452 hasRelatedWork W2158169606 @default.
- W4366458452 hasRelatedWork W2158568378 @default.
- W4366458452 hasRelatedWork W2326195745 @default.
- W4366458452 hasRelatedWork W2357233906 @default.
- W4366458452 hasRelatedWork W2374411824 @default.
- W4366458452 hasRelatedWork W2388634220 @default.
- W4366458452 hasRelatedWork W3146609297 @default.
- W4366458452 isParatext "false" @default.
- W4366458452 isRetracted "false" @default.
- W4366458452 workType "article" @default.