Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366459054> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4366459054 abstract "Session-based recommendation systems(SBRS) are more suitable for the current e-commerce and streaming media recommendation scenarios and thus have become a hot topic. The data encountered by SBRS is typically highly sparse, which also serves as one of the bottlenecks limiting the accuracy of recommendations. So Contrastive Learning(CL) is applied in SBRS owing to its capability of improving embedding learning under the condition of sparse data. However, existing CL strategies are limited in their ability to enforce finer-grained (e.g., factor-level) comparisons and, as a result, are unable to capture subtle differences between instances. More than that, these strategies usually use item or segment dropout as a means of data augmentation which may result in sparser data and thus ineffective self-supervised signals. By addressing the two aforementioned limitations, we introduce a novel multi-granularity CL framework. Specifically, two extra augmented embedding convolution channels with different granularities are constructed and the embeddings learned by them are compared with those learned from original view to complete the CL tasks. At factor-level, we employ Disentangled Representation Learning to obtain finer-grained data(e.g. factor-level embeddings), with which we can construct factor-level convolution channels. At item-level, the star graph is deployed as the augmented data and graph convolution on it can ensure the effectiveness of self-supervised signals. Compare the learned embeddings of these two views with the learned embeddings of the basic view to achieve CL at two granularities. Finally, the more precise item-level and factor-level embeddings obtained are referenced to generate personalized recommendations for the user. The proposed model is validated through extensive experiments on two benchmark datasets, showcasing superior performance compared to existing methods." @default.
- W4366459054 created "2023-04-22" @default.
- W4366459054 creator A5038711316 @default.
- W4366459054 creator A5057859102 @default.
- W4366459054 creator A5070924173 @default.
- W4366459054 date "2023-04-18" @default.
- W4366459054 modified "2023-10-16" @default.
- W4366459054 title "Dual-Granularity Contrastive Learning for Session-based Recommendation" @default.
- W4366459054 doi "https://doi.org/10.48550/arxiv.2304.08873" @default.
- W4366459054 hasPublicationYear "2023" @default.
- W4366459054 type Work @default.
- W4366459054 citedByCount "0" @default.
- W4366459054 crossrefType "posted-content" @default.
- W4366459054 hasAuthorship W4366459054A5038711316 @default.
- W4366459054 hasAuthorship W4366459054A5057859102 @default.
- W4366459054 hasAuthorship W4366459054A5070924173 @default.
- W4366459054 hasBestOaLocation W43664590541 @default.
- W4366459054 hasConcept C111919701 @default.
- W4366459054 hasConcept C119857082 @default.
- W4366459054 hasConcept C132525143 @default.
- W4366459054 hasConcept C136764020 @default.
- W4366459054 hasConcept C154945302 @default.
- W4366459054 hasConcept C177774035 @default.
- W4366459054 hasConcept C184898388 @default.
- W4366459054 hasConcept C199360897 @default.
- W4366459054 hasConcept C2776145597 @default.
- W4366459054 hasConcept C2779182362 @default.
- W4366459054 hasConcept C2780801425 @default.
- W4366459054 hasConcept C2781039887 @default.
- W4366459054 hasConcept C41008148 @default.
- W4366459054 hasConcept C41608201 @default.
- W4366459054 hasConcept C45347329 @default.
- W4366459054 hasConcept C50644808 @default.
- W4366459054 hasConcept C557471498 @default.
- W4366459054 hasConcept C80444323 @default.
- W4366459054 hasConceptScore W4366459054C111919701 @default.
- W4366459054 hasConceptScore W4366459054C119857082 @default.
- W4366459054 hasConceptScore W4366459054C132525143 @default.
- W4366459054 hasConceptScore W4366459054C136764020 @default.
- W4366459054 hasConceptScore W4366459054C154945302 @default.
- W4366459054 hasConceptScore W4366459054C177774035 @default.
- W4366459054 hasConceptScore W4366459054C184898388 @default.
- W4366459054 hasConceptScore W4366459054C199360897 @default.
- W4366459054 hasConceptScore W4366459054C2776145597 @default.
- W4366459054 hasConceptScore W4366459054C2779182362 @default.
- W4366459054 hasConceptScore W4366459054C2780801425 @default.
- W4366459054 hasConceptScore W4366459054C2781039887 @default.
- W4366459054 hasConceptScore W4366459054C41008148 @default.
- W4366459054 hasConceptScore W4366459054C41608201 @default.
- W4366459054 hasConceptScore W4366459054C45347329 @default.
- W4366459054 hasConceptScore W4366459054C50644808 @default.
- W4366459054 hasConceptScore W4366459054C557471498 @default.
- W4366459054 hasConceptScore W4366459054C80444323 @default.
- W4366459054 hasLocation W43664590541 @default.
- W4366459054 hasOpenAccess W4366459054 @default.
- W4366459054 hasPrimaryLocation W43664590541 @default.
- W4366459054 hasRelatedWork W2280186906 @default.
- W4366459054 hasRelatedWork W2923818335 @default.
- W4366459054 hasRelatedWork W2941557312 @default.
- W4366459054 hasRelatedWork W3035116611 @default.
- W4366459054 hasRelatedWork W3044604502 @default.
- W4366459054 hasRelatedWork W3173572738 @default.
- W4366459054 hasRelatedWork W4226361842 @default.
- W4366459054 hasRelatedWork W4287710676 @default.
- W4366459054 hasRelatedWork W4287763734 @default.
- W4366459054 hasRelatedWork W4383860413 @default.
- W4366459054 isParatext "false" @default.
- W4366459054 isRetracted "false" @default.
- W4366459054 workType "article" @default.