Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366465710> ?p ?o ?g. }
- W4366465710 endingPage "835" @default.
- W4366465710 startingPage "826" @default.
- W4366465710 abstract "Mass spectrometry in parallel with real-time machine learning techniques were paired in a novel application to detect and identify chemically specific, early indicators of fires and near-fire events involving a set of selected materials: Mylar, Teflon, and poly(methyl methacrylate) (PMMA). The volatile organic compounds emitted during the thermal decomposition of each of the three materials were characterized using a quadrupole mass spectrometer which scanned the 1-200 m/z range. CO2, CH3CHO, and C6H6 were the main volatiles detected during Mylar thermal decomposition, while Teflon's thermal decomposition yielded CO2 and a set of fluorocarbon compounds including CF4, C2F4, C2F6, C3F6, CF2O, and CF3O. PMMA produced CO2 and methyl methacrylate (MMA, C5H8O2). The mass spectral peak patterns observed during the thermal decomposition of each material were unique to that material and were therefore useful as chemical signatures. It was also observed that the chemical signatures remained consistent and detectable when multiple materials were heated together. Mass spectra data sets containing the chemical signatures for each material and mixtures were collected and analyzed using a random forest panel machine learning classification. The classification was tested and demonstrated 100% accuracy for single material spectra and an average of 92.3% accuracy for mixed material spectra. This investigation presents a novel technique for the real-time, chemically specific detection of fire related VOCs through mass spectrometry which shows promise as a more rapid and accurate method for detecting fires or near-fire events." @default.
- W4366465710 created "2023-04-22" @default.
- W4366465710 creator A5015681681 @default.
- W4366465710 creator A5021971489 @default.
- W4366465710 creator A5045699117 @default.
- W4366465710 creator A5048372806 @default.
- W4366465710 creator A5067836946 @default.
- W4366465710 date "2023-04-20" @default.
- W4366465710 modified "2023-10-14" @default.
- W4366465710 title "A Mass Spectrometry-Machine Learning Approach for Detecting Volatile Organic Compound Emissions for Early Fire Detection" @default.
- W4366465710 cites W1966843193 @default.
- W4366465710 cites W1988438036 @default.
- W4366465710 cites W1995945562 @default.
- W4366465710 cites W2000071980 @default.
- W4366465710 cites W2016009561 @default.
- W4366465710 cites W2021764710 @default.
- W4366465710 cites W2029696363 @default.
- W4366465710 cites W2030337054 @default.
- W4366465710 cites W2039129503 @default.
- W4366465710 cites W2077052313 @default.
- W4366465710 cites W2082201765 @default.
- W4366465710 cites W2103438442 @default.
- W4366465710 cites W2119821739 @default.
- W4366465710 cites W2132849374 @default.
- W4366465710 cites W2139255929 @default.
- W4366465710 cites W2162064655 @default.
- W4366465710 cites W2168833768 @default.
- W4366465710 cites W2169477819 @default.
- W4366465710 cites W2257400853 @default.
- W4366465710 cites W2284898711 @default.
- W4366465710 cites W2319833222 @default.
- W4366465710 cites W2618613105 @default.
- W4366465710 cites W2787894218 @default.
- W4366465710 cites W2802487676 @default.
- W4366465710 cites W2803295883 @default.
- W4366465710 cites W2898884925 @default.
- W4366465710 cites W2923156487 @default.
- W4366465710 cites W2950479997 @default.
- W4366465710 cites W2993649519 @default.
- W4366465710 cites W3003108576 @default.
- W4366465710 cites W3014619649 @default.
- W4366465710 cites W3046937629 @default.
- W4366465710 cites W3083504322 @default.
- W4366465710 cites W3127989310 @default.
- W4366465710 cites W3181414820 @default.
- W4366465710 cites W3208381930 @default.
- W4366465710 cites W4210937574 @default.
- W4366465710 cites W4210951907 @default.
- W4366465710 cites W4214598105 @default.
- W4366465710 cites W4220815859 @default.
- W4366465710 cites W4220893883 @default.
- W4366465710 doi "https://doi.org/10.1021/jasms.2c00304" @default.
- W4366465710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37079759" @default.
- W4366465710 hasPublicationYear "2023" @default.
- W4366465710 type Work @default.
- W4366465710 citedByCount "0" @default.
- W4366465710 crossrefType "journal-article" @default.
- W4366465710 hasAuthorship W4366465710A5015681681 @default.
- W4366465710 hasAuthorship W4366465710A5021971489 @default.
- W4366465710 hasAuthorship W4366465710A5045699117 @default.
- W4366465710 hasAuthorship W4366465710A5048372806 @default.
- W4366465710 hasAuthorship W4366465710A5067836946 @default.
- W4366465710 hasBestOaLocation W43664657101 @default.
- W4366465710 hasConcept C113196181 @default.
- W4366465710 hasConcept C123460561 @default.
- W4366465710 hasConcept C124681953 @default.
- W4366465710 hasConcept C160434732 @default.
- W4366465710 hasConcept C162356407 @default.
- W4366465710 hasConcept C166940927 @default.
- W4366465710 hasConcept C178790620 @default.
- W4366465710 hasConcept C185592680 @default.
- W4366465710 hasConcept C205345274 @default.
- W4366465710 hasConcept C2777935641 @default.
- W4366465710 hasConcept C2778150766 @default.
- W4366465710 hasConcept C2779580905 @default.
- W4366465710 hasConcept C40325409 @default.
- W4366465710 hasConcept C43617362 @default.
- W4366465710 hasConcept C521977710 @default.
- W4366465710 hasConceptScore W4366465710C113196181 @default.
- W4366465710 hasConceptScore W4366465710C123460561 @default.
- W4366465710 hasConceptScore W4366465710C124681953 @default.
- W4366465710 hasConceptScore W4366465710C160434732 @default.
- W4366465710 hasConceptScore W4366465710C162356407 @default.
- W4366465710 hasConceptScore W4366465710C166940927 @default.
- W4366465710 hasConceptScore W4366465710C178790620 @default.
- W4366465710 hasConceptScore W4366465710C185592680 @default.
- W4366465710 hasConceptScore W4366465710C205345274 @default.
- W4366465710 hasConceptScore W4366465710C2777935641 @default.
- W4366465710 hasConceptScore W4366465710C2778150766 @default.
- W4366465710 hasConceptScore W4366465710C2779580905 @default.
- W4366465710 hasConceptScore W4366465710C40325409 @default.
- W4366465710 hasConceptScore W4366465710C43617362 @default.
- W4366465710 hasConceptScore W4366465710C521977710 @default.
- W4366465710 hasFunder F4320306101 @default.
- W4366465710 hasIssue "5" @default.
- W4366465710 hasLocation W43664657101 @default.
- W4366465710 hasLocation W43664657102 @default.
- W4366465710 hasLocation W43664657103 @default.