Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366465732> ?p ?o ?g. }
- W4366465732 endingPage "3979" @default.
- W4366465732 startingPage "3970" @default.
- W4366465732 abstract "Machine-learned coarse-grained (CG) models have the potential for simulating large molecular complexes beyond what is possible with atomistic molecular dynamics. However, training accurate CG models remains a challenge. A widely used methodology for learning bottom-up CG force fields maps forces from all-atom molecular dynamics to the CG representation and matches them with a CG force field on average. We show that there is flexibility in how to map all-atom forces to the CG representation and that the most commonly used mapping methods are statistically inefficient and potentially even incorrect in the presence of constraints in the all-atom simulation. We define an optimization statement for force mappings and demonstrate that substantially improved CG force fields can be learned from the same simulation data when using optimized force maps. The method is demonstrated on the miniproteins chignolin and tryptophan cage and published as open-source code." @default.
- W4366465732 created "2023-04-22" @default.
- W4366465732 creator A5005082855 @default.
- W4366465732 creator A5021674361 @default.
- W4366465732 creator A5055016850 @default.
- W4366465732 creator A5061903235 @default.
- W4366465732 creator A5074102184 @default.
- W4366465732 creator A5081168138 @default.
- W4366465732 date "2023-04-20" @default.
- W4366465732 modified "2023-10-18" @default.
- W4366465732 title "Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics" @default.
- W4366465732 cites W1519815927 @default.
- W4366465732 cites W1542968489 @default.
- W4366465732 cites W1551220465 @default.
- W4366465732 cites W1576278180 @default.
- W4366465732 cites W1800251225 @default.
- W4366465732 cites W1976499671 @default.
- W4366465732 cites W1977121992 @default.
- W4366465732 cites W1981436290 @default.
- W4366465732 cites W1986356457 @default.
- W4366465732 cites W2005069776 @default.
- W4366465732 cites W2007872320 @default.
- W4366465732 cites W2015625779 @default.
- W4366465732 cites W2026737855 @default.
- W4366465732 cites W2034307675 @default.
- W4366465732 cites W2036239645 @default.
- W4366465732 cites W2060174126 @default.
- W4366465732 cites W2060933179 @default.
- W4366465732 cites W2061308254 @default.
- W4366465732 cites W2063182936 @default.
- W4366465732 cites W2065148800 @default.
- W4366465732 cites W2090913292 @default.
- W4366465732 cites W2091701505 @default.
- W4366465732 cites W2095530874 @default.
- W4366465732 cites W2150081678 @default.
- W4366465732 cites W2315297180 @default.
- W4366465732 cites W2326778587 @default.
- W4366465732 cites W2332360555 @default.
- W4366465732 cites W2406299872 @default.
- W4366465732 cites W2499809569 @default.
- W4366465732 cites W2558395406 @default.
- W4366465732 cites W2561394287 @default.
- W4366465732 cites W2767997723 @default.
- W4366465732 cites W2769646558 @default.
- W4366465732 cites W2808265829 @default.
- W4366465732 cites W2883596424 @default.
- W4366465732 cites W2892113269 @default.
- W4366465732 cites W2901995873 @default.
- W4366465732 cites W2902461580 @default.
- W4366465732 cites W2904760315 @default.
- W4366465732 cites W2912807874 @default.
- W4366465732 cites W2923188602 @default.
- W4366465732 cites W2949223833 @default.
- W4366465732 cites W2963156201 @default.
- W4366465732 cites W2963433607 @default.
- W4366465732 cites W3092794557 @default.
- W4366465732 cites W3097781375 @default.
- W4366465732 cites W3098370560 @default.
- W4366465732 cites W3100810942 @default.
- W4366465732 cites W3103390675 @default.
- W4366465732 cites W3105591038 @default.
- W4366465732 cites W3105774298 @default.
- W4366465732 cites W3108694932 @default.
- W4366465732 cites W3124691530 @default.
- W4366465732 cites W3148042916 @default.
- W4366465732 cites W3159891627 @default.
- W4366465732 cites W3185745670 @default.
- W4366465732 cites W3194329279 @default.
- W4366465732 cites W3206968565 @default.
- W4366465732 cites W3215255282 @default.
- W4366465732 cites W4200592301 @default.
- W4366465732 cites W4281477498 @default.
- W4366465732 cites W4294891977 @default.
- W4366465732 cites W4295725126 @default.
- W4366465732 cites W4304588537 @default.
- W4366465732 cites W4306313211 @default.
- W4366465732 cites W4310154079 @default.
- W4366465732 cites W4311723468 @default.
- W4366465732 cites W4317033629 @default.
- W4366465732 cites W4317556131 @default.
- W4366465732 cites W4318681889 @default.
- W4366465732 cites W4319078939 @default.
- W4366465732 cites W4321367150 @default.
- W4366465732 cites W4362468720 @default.
- W4366465732 doi "https://doi.org/10.1021/acs.jpclett.3c00444" @default.
- W4366465732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37079800" @default.
- W4366465732 hasPublicationYear "2023" @default.
- W4366465732 type Work @default.
- W4366465732 citedByCount "3" @default.
- W4366465732 countsByYear W43664657322023 @default.
- W4366465732 crossrefType "journal-article" @default.
- W4366465732 hasAuthorship W4366465732A5005082855 @default.
- W4366465732 hasAuthorship W4366465732A5021674361 @default.
- W4366465732 hasAuthorship W4366465732A5055016850 @default.
- W4366465732 hasAuthorship W4366465732A5061903235 @default.
- W4366465732 hasAuthorship W4366465732A5074102184 @default.
- W4366465732 hasAuthorship W4366465732A5081168138 @default.
- W4366465732 hasBestOaLocation W43664657322 @default.