Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366483359> ?p ?o ?g. }
- W4366483359 endingPage "247" @default.
- W4366483359 startingPage "237" @default.
- W4366483359 abstract "Steam cracking is the dominant technology for producing light olefins, which are believed to be the foundation of the chemical industry. Predictive models of the cracking process can boost production efficiency and profit margin. Rapid advancements in machine learning research have recently enabled data-driven solutions to usher in a new era of process modeling. Meanwhile, its practical application to steam cracking is still hindered by the trade-off between prediction accuracy and computational speed. This research presents a framework for data-driven intelligent modeling of the steam cracking process. Industrial data preparation and feature engineering techniques provide computational-ready datasets for the framework, and feedstock similarities are exploited using k-means clustering. We propose LArge-Residuals-Deletion Multivariate Adaptive Regression Spline (LARD-MARS), a modeling approach that explicitly generates output formulas and eliminates potentially outlying instances. The framework is validated further by the presentation of clustering results, the explanation of variable importance, and the testing and comparison of model performance." @default.
- W4366483359 created "2023-04-22" @default.
- W4366483359 creator A5056293693 @default.
- W4366483359 creator A5070774797 @default.
- W4366483359 creator A5086639822 @default.
- W4366483359 date "2023-09-01" @default.
- W4366483359 modified "2023-10-09" @default.
- W4366483359 title "Data-driven intelligent modeling framework for the steam cracking process" @default.
- W4366483359 cites W1975555443 @default.
- W4366483359 cites W1987971958 @default.
- W4366483359 cites W2015487637 @default.
- W4366483359 cites W2020505522 @default.
- W4366483359 cites W2051009334 @default.
- W4366483359 cites W2112447232 @default.
- W4366483359 cites W2112831709 @default.
- W4366483359 cites W2140405352 @default.
- W4366483359 cites W2496700082 @default.
- W4366483359 cites W2538439818 @default.
- W4366483359 cites W2565385730 @default.
- W4366483359 cites W2609153313 @default.
- W4366483359 cites W2742765545 @default.
- W4366483359 cites W2747427361 @default.
- W4366483359 cites W2789841081 @default.
- W4366483359 cites W2791043733 @default.
- W4366483359 cites W2791189374 @default.
- W4366483359 cites W2794268050 @default.
- W4366483359 cites W2911642618 @default.
- W4366483359 cites W2912066728 @default.
- W4366483359 cites W2943547784 @default.
- W4366483359 cites W2979549919 @default.
- W4366483359 cites W2981458621 @default.
- W4366483359 cites W2995313969 @default.
- W4366483359 cites W2999525538 @default.
- W4366483359 cites W3016895690 @default.
- W4366483359 cites W3034994488 @default.
- W4366483359 cites W3043458171 @default.
- W4366483359 cites W3045144178 @default.
- W4366483359 cites W3081226569 @default.
- W4366483359 cites W3089253459 @default.
- W4366483359 cites W3089352498 @default.
- W4366483359 cites W3173009735 @default.
- W4366483359 cites W3206565503 @default.
- W4366483359 doi "https://doi.org/10.1016/j.cjche.2023.03.020" @default.
- W4366483359 hasPublicationYear "2023" @default.
- W4366483359 type Work @default.
- W4366483359 citedByCount "0" @default.
- W4366483359 crossrefType "journal-article" @default.
- W4366483359 hasAuthorship W4366483359A5056293693 @default.
- W4366483359 hasAuthorship W4366483359A5070774797 @default.
- W4366483359 hasAuthorship W4366483359A5086639822 @default.
- W4366483359 hasConcept C111919701 @default.
- W4366483359 hasConcept C119857082 @default.
- W4366483359 hasConcept C124101348 @default.
- W4366483359 hasConcept C127413603 @default.
- W4366483359 hasConcept C132964779 @default.
- W4366483359 hasConcept C147789679 @default.
- W4366483359 hasConcept C152877465 @default.
- W4366483359 hasConcept C154945302 @default.
- W4366483359 hasConcept C185592680 @default.
- W4366483359 hasConcept C199360897 @default.
- W4366483359 hasConcept C21880701 @default.
- W4366483359 hasConcept C41008148 @default.
- W4366483359 hasConcept C44882253 @default.
- W4366483359 hasConcept C58396970 @default.
- W4366483359 hasConcept C64946054 @default.
- W4366483359 hasConcept C73555534 @default.
- W4366483359 hasConcept C98045186 @default.
- W4366483359 hasConceptScore W4366483359C111919701 @default.
- W4366483359 hasConceptScore W4366483359C119857082 @default.
- W4366483359 hasConceptScore W4366483359C124101348 @default.
- W4366483359 hasConceptScore W4366483359C127413603 @default.
- W4366483359 hasConceptScore W4366483359C132964779 @default.
- W4366483359 hasConceptScore W4366483359C147789679 @default.
- W4366483359 hasConceptScore W4366483359C152877465 @default.
- W4366483359 hasConceptScore W4366483359C154945302 @default.
- W4366483359 hasConceptScore W4366483359C185592680 @default.
- W4366483359 hasConceptScore W4366483359C199360897 @default.
- W4366483359 hasConceptScore W4366483359C21880701 @default.
- W4366483359 hasConceptScore W4366483359C41008148 @default.
- W4366483359 hasConceptScore W4366483359C44882253 @default.
- W4366483359 hasConceptScore W4366483359C58396970 @default.
- W4366483359 hasConceptScore W4366483359C64946054 @default.
- W4366483359 hasConceptScore W4366483359C73555534 @default.
- W4366483359 hasConceptScore W4366483359C98045186 @default.
- W4366483359 hasFunder F4320335777 @default.
- W4366483359 hasLocation W43664833591 @default.
- W4366483359 hasOpenAccess W4366483359 @default.
- W4366483359 hasPrimaryLocation W43664833591 @default.
- W4366483359 hasRelatedWork W2728991141 @default.
- W4366483359 hasRelatedWork W2961085424 @default.
- W4366483359 hasRelatedWork W3192150692 @default.
- W4366483359 hasRelatedWork W4246510521 @default.
- W4366483359 hasRelatedWork W4246751904 @default.
- W4366483359 hasRelatedWork W4249931853 @default.
- W4366483359 hasRelatedWork W4286629047 @default.
- W4366483359 hasRelatedWork W4306674287 @default.
- W4366483359 hasRelatedWork W4323546569 @default.
- W4366483359 hasRelatedWork W4224009465 @default.