Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366492122> ?p ?o ?g. }
- W4366492122 abstract "Abstract - Groundwater accounts for 63% of agriculture irrigation and 80% of household water supplies. In Many parts of the country, the water table is going down by 1 to 2 meters per year due to over utilization. It may result in up to a 20 percent decrease in food production. Given the huge impact this invisible resource has on the economy, environment, and society, we need to improve the scientific understanding, estimation, and governance of groundwater. The creation of groundwater’s possible storage area (GWPSZ) and regional recharge (GWRZ) zone maps can be helpful in this regard. They depend on statistics-based, machine learning (ML) based, and hybrid models. This paper reviews the work done by multiple researchers who have used geospatial techniques using satellite imagery sensing analytics in GIS, followed by AHP or Multi Influencing Factors (MIF) pairwise comparison to characterize, forecast GW levels, and generate GWPSZ and recharge GWRZ maps. We also reviewed the research on historical aquifer data using ML-based regression analysis, random forest (RF), supervised algorithms like support vector machine, nonparametric ML algorithm decision tree model, and ensemble hybrid multi-wavelet ANN models for the prediction of the GWL variability and storage loss/deceleration. Though some papers focused on the use cases like irrigation scheduling and predicting geothermal well locations or designing community cooling hubs, a comprehensive approach for village-level community water demand and supply assessment and decisionmaking is missing." @default.
- W4366492122 created "2023-04-22" @default.
- W4366492122 creator A5057116586 @default.
- W4366492122 creator A5077036929 @default.
- W4366492122 date "2023-03-24" @default.
- W4366492122 modified "2023-09-29" @default.
- W4366492122 title "Review of Groundwater Potential Storage and Recharge Zone Map Delineation Using Statistics based Hydrological and Machine Learning based Artificial Intelligent Models" @default.
- W4366492122 cites W1963775512 @default.
- W4366492122 cites W1979733600 @default.
- W4366492122 cites W1979797588 @default.
- W4366492122 cites W1983756697 @default.
- W4366492122 cites W1984731103 @default.
- W4366492122 cites W1985288162 @default.
- W4366492122 cites W1989319038 @default.
- W4366492122 cites W2013558387 @default.
- W4366492122 cites W2026931581 @default.
- W4366492122 cites W2043307538 @default.
- W4366492122 cites W2070271130 @default.
- W4366492122 cites W2115878679 @default.
- W4366492122 cites W2136800892 @default.
- W4366492122 cites W2143715729 @default.
- W4366492122 cites W2192928170 @default.
- W4366492122 cites W2208293910 @default.
- W4366492122 cites W2272174929 @default.
- W4366492122 cites W2521201985 @default.
- W4366492122 cites W2580694467 @default.
- W4366492122 cites W2606580569 @default.
- W4366492122 cites W2737340082 @default.
- W4366492122 cites W2741433739 @default.
- W4366492122 cites W2776010176 @default.
- W4366492122 cites W2793335215 @default.
- W4366492122 cites W2887953949 @default.
- W4366492122 cites W2903625277 @default.
- W4366492122 cites W2940456019 @default.
- W4366492122 cites W2952194948 @default.
- W4366492122 cites W2955448012 @default.
- W4366492122 cites W3038533526 @default.
- W4366492122 cites W3089869686 @default.
- W4366492122 cites W3103312084 @default.
- W4366492122 cites W3199597023 @default.
- W4366492122 cites W4200030000 @default.
- W4366492122 cites W4224324594 @default.
- W4366492122 cites W4243739869 @default.
- W4366492122 cites W4307941906 @default.
- W4366492122 cites W4307943431 @default.
- W4366492122 cites W4311533651 @default.
- W4366492122 doi "https://doi.org/10.1109/sictim56495.2023.10104829" @default.
- W4366492122 hasPublicationYear "2023" @default.
- W4366492122 type Work @default.
- W4366492122 citedByCount "0" @default.
- W4366492122 crossrefType "proceedings-article" @default.
- W4366492122 hasAuthorship W4366492122A5057116586 @default.
- W4366492122 hasAuthorship W4366492122A5077036929 @default.
- W4366492122 hasConcept C119857082 @default.
- W4366492122 hasConcept C12267149 @default.
- W4366492122 hasConcept C124101348 @default.
- W4366492122 hasConcept C127413603 @default.
- W4366492122 hasConcept C154945302 @default.
- W4366492122 hasConcept C159390177 @default.
- W4366492122 hasConcept C159750122 @default.
- W4366492122 hasConcept C174091901 @default.
- W4366492122 hasConcept C187320778 @default.
- W4366492122 hasConcept C205649164 @default.
- W4366492122 hasConcept C2777589951 @default.
- W4366492122 hasConcept C39432304 @default.
- W4366492122 hasConcept C41008148 @default.
- W4366492122 hasConcept C41856607 @default.
- W4366492122 hasConcept C62649853 @default.
- W4366492122 hasConcept C75622301 @default.
- W4366492122 hasConcept C76177295 @default.
- W4366492122 hasConcept C84525736 @default.
- W4366492122 hasConcept C9770341 @default.
- W4366492122 hasConceptScore W4366492122C119857082 @default.
- W4366492122 hasConceptScore W4366492122C12267149 @default.
- W4366492122 hasConceptScore W4366492122C124101348 @default.
- W4366492122 hasConceptScore W4366492122C127413603 @default.
- W4366492122 hasConceptScore W4366492122C154945302 @default.
- W4366492122 hasConceptScore W4366492122C159390177 @default.
- W4366492122 hasConceptScore W4366492122C159750122 @default.
- W4366492122 hasConceptScore W4366492122C174091901 @default.
- W4366492122 hasConceptScore W4366492122C187320778 @default.
- W4366492122 hasConceptScore W4366492122C205649164 @default.
- W4366492122 hasConceptScore W4366492122C2777589951 @default.
- W4366492122 hasConceptScore W4366492122C39432304 @default.
- W4366492122 hasConceptScore W4366492122C41008148 @default.
- W4366492122 hasConceptScore W4366492122C41856607 @default.
- W4366492122 hasConceptScore W4366492122C62649853 @default.
- W4366492122 hasConceptScore W4366492122C75622301 @default.
- W4366492122 hasConceptScore W4366492122C76177295 @default.
- W4366492122 hasConceptScore W4366492122C84525736 @default.
- W4366492122 hasConceptScore W4366492122C9770341 @default.
- W4366492122 hasLocation W43664921221 @default.
- W4366492122 hasOpenAccess W4366492122 @default.
- W4366492122 hasPrimaryLocation W43664921221 @default.
- W4366492122 hasRelatedWork W1470425429 @default.
- W4366492122 hasRelatedWork W1996541855 @default.
- W4366492122 hasRelatedWork W3186233728 @default.
- W4366492122 hasRelatedWork W3195168932 @default.
- W4366492122 hasRelatedWork W3210918776 @default.
- W4366492122 hasRelatedWork W4205478082 @default.