Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366495655> ?p ?o ?g. }
- W4366495655 endingPage "371" @default.
- W4366495655 startingPage "355" @default.
- W4366495655 abstract "Abstract An essential ionosphere parameter that can be applied for ionosphere corrections in radio systems is the ionosphere’s total electron content (TEC). TEC is a crucial parameter for ionospheric correction in the Global Navigation Satellite Systems (GNSS) of positioning, navigation, and radio science. This study uses the artificial neural network (ANN) application to improve the International Reference Ionospheric Model (IRI-2016) TEC maps across Egypt. The study period is based on the data that were accessible between 2013 and 2020. The ANN model input parameters are (year, day, hour, latitude, and longitude). The ANN1 and ANN2 estimate TEC values of the enhanced IRI-2020 and IRI-2016 according to the Center for Orbit Determination in Europe (CODE), respectively. ANN3 and ANN4 estimate TEC values of the enhanced IRI-2020 and IRI-2016 regarding IGS stations data analyzed by GNSS Analysis software for the multi-constellation and multi-frequency Precise Positioning (GAMP) model, respectively. The ANN model’s validations were based on the root mean square error (RMSE), correlation coefficient (CC), and T -test. According to the results, the suggested ANN can accurately predict the TEC over Egypt. In comparison to the IRI model, the TEC maps that the ANN models produced are significantly more in accordance with the related CODE and GAMP TEC maps. These results demonstrate that the developed approach can enhance IRI 2016 and IRI-2020s ability to estimate global TEC maps. For the ANN1 model, the mean CC and RMSE are 0.92, and 5.15 TECU for all the global data sets compared by CODE. On the other hand, the CC and RMSE between IRI-2020 and CODE are 0.847 and 7.67 TECU. For the ANN2, the mean CC and RMSE are 0.87, 5.59 TECU compared by CODE, respectively. Although the CC and RMSE between IRI-2016 and CODE are 0.820 and 9.052 TECU respectively. For the ANN3, the CC and RMSE are 0.830 and 4.87 TECU compared with GAMP for all global data, respectively. On the other hand, the CC and RMSE between IRI-2020 and GAMP are 0.644 and 10.41, respectively. For the ANN4 the CC and RMSE are 0.82, and 5.95 TECU compared with GAMP, respectively. Although the CC and RMSE between IRI-2016 and GAMP are 0.665 and 12.347 TECU respectively." @default.
- W4366495655 created "2023-04-22" @default.
- W4366495655 creator A5003833578 @default.
- W4366495655 creator A5032585523 @default.
- W4366495655 creator A5062560166 @default.
- W4366495655 creator A5081801178 @default.
- W4366495655 date "2023-04-19" @default.
- W4366495655 modified "2023-10-03" @default.
- W4366495655 title "Improvement of international reference ionospheric model total electron content maps: a case study using artificial neural network in Egypt" @default.
- W4366495655 cites W1985612135 @default.
- W4366495655 cites W1986964719 @default.
- W4366495655 cites W1987010652 @default.
- W4366495655 cites W1989570322 @default.
- W4366495655 cites W1992275422 @default.
- W4366495655 cites W1993894234 @default.
- W4366495655 cites W2024864342 @default.
- W4366495655 cites W2061515832 @default.
- W4366495655 cites W2070865054 @default.
- W4366495655 cites W2080308958 @default.
- W4366495655 cites W2086267815 @default.
- W4366495655 cites W2111825461 @default.
- W4366495655 cites W2142559563 @default.
- W4366495655 cites W2146163074 @default.
- W4366495655 cites W2153105094 @default.
- W4366495655 cites W2168987504 @default.
- W4366495655 cites W2170975595 @default.
- W4366495655 cites W2434099380 @default.
- W4366495655 cites W2568906212 @default.
- W4366495655 cites W2588308723 @default.
- W4366495655 cites W2605669012 @default.
- W4366495655 cites W2769790926 @default.
- W4366495655 cites W2770389128 @default.
- W4366495655 cites W2790818882 @default.
- W4366495655 cites W2809687163 @default.
- W4366495655 cites W2903929060 @default.
- W4366495655 cites W2992429640 @default.
- W4366495655 cites W2993197207 @default.
- W4366495655 cites W3016753238 @default.
- W4366495655 cites W3035035250 @default.
- W4366495655 cites W3095306933 @default.
- W4366495655 cites W328251279 @default.
- W4366495655 cites W4205686602 @default.
- W4366495655 cites W4284689980 @default.
- W4366495655 doi "https://doi.org/10.1515/jag-2023-0002" @default.
- W4366495655 hasPublicationYear "2023" @default.
- W4366495655 type Work @default.
- W4366495655 citedByCount "1" @default.
- W4366495655 countsByYear W43664956552023 @default.
- W4366495655 crossrefType "journal-article" @default.
- W4366495655 hasAuthorship W4366495655A5003833578 @default.
- W4366495655 hasAuthorship W4366495655A5032585523 @default.
- W4366495655 hasAuthorship W4366495655A5062560166 @default.
- W4366495655 hasAuthorship W4366495655A5081801178 @default.
- W4366495655 hasConcept C105795698 @default.
- W4366495655 hasConcept C11413529 @default.
- W4366495655 hasConcept C116403925 @default.
- W4366495655 hasConcept C119857082 @default.
- W4366495655 hasConcept C121332964 @default.
- W4366495655 hasConcept C122523270 @default.
- W4366495655 hasConcept C127313418 @default.
- W4366495655 hasConcept C1276947 @default.
- W4366495655 hasConcept C13280743 @default.
- W4366495655 hasConcept C139945424 @default.
- W4366495655 hasConcept C14279187 @default.
- W4366495655 hasConcept C153294291 @default.
- W4366495655 hasConcept C154945302 @default.
- W4366495655 hasConcept C165391973 @default.
- W4366495655 hasConcept C176379880 @default.
- W4366495655 hasConcept C19269812 @default.
- W4366495655 hasConcept C202511199 @default.
- W4366495655 hasConcept C205649164 @default.
- W4366495655 hasConcept C2777966019 @default.
- W4366495655 hasConcept C2778027091 @default.
- W4366495655 hasConcept C2780092901 @default.
- W4366495655 hasConcept C2780554747 @default.
- W4366495655 hasConcept C33923547 @default.
- W4366495655 hasConcept C39432304 @default.
- W4366495655 hasConcept C41008148 @default.
- W4366495655 hasConcept C50644808 @default.
- W4366495655 hasConcept C60229501 @default.
- W4366495655 hasConcept C62649853 @default.
- W4366495655 hasConcept C76155785 @default.
- W4366495655 hasConcept C8058405 @default.
- W4366495655 hasConceptScore W4366495655C105795698 @default.
- W4366495655 hasConceptScore W4366495655C11413529 @default.
- W4366495655 hasConceptScore W4366495655C116403925 @default.
- W4366495655 hasConceptScore W4366495655C119857082 @default.
- W4366495655 hasConceptScore W4366495655C121332964 @default.
- W4366495655 hasConceptScore W4366495655C122523270 @default.
- W4366495655 hasConceptScore W4366495655C127313418 @default.
- W4366495655 hasConceptScore W4366495655C1276947 @default.
- W4366495655 hasConceptScore W4366495655C13280743 @default.
- W4366495655 hasConceptScore W4366495655C139945424 @default.
- W4366495655 hasConceptScore W4366495655C14279187 @default.
- W4366495655 hasConceptScore W4366495655C153294291 @default.
- W4366495655 hasConceptScore W4366495655C154945302 @default.
- W4366495655 hasConceptScore W4366495655C165391973 @default.
- W4366495655 hasConceptScore W4366495655C176379880 @default.