Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366496851> ?p ?o ?g. }
- W4366496851 endingPage "110844" @default.
- W4366496851 startingPage "110844" @default.
- W4366496851 abstract "PurposeTo develop a deep learning-based metal artifact reduction technique (dl-MAR) and quantitatively compare metal artifacts on dl-MAR-corrected CT-images, orthopedic metal artifact reduction (O-MAR)-corrected CT-images and uncorrected CT-images after sacroiliac (SI) joint fusion.Methodsdl-MAR was trained on CT-images with simulated metal artifacts. Pre-surgery CT-images and uncorrected, O-MAR-corrected and dl-MAR-corrected post-surgery CT-images of twenty-five patients undergoing SI joint fusion were retrospectively obtained. Image registration was applied to align pre-surgery with post-surgery CT-images within each patient, allowing placement of regions of interest (ROIs) on the same anatomical locations. Six ROIs were placed on the metal implant and the contralateral side in bone lateral of the SI joint, the gluteus medius muscle and the iliacus muscle. Metal artifacts were quantified as the difference in Hounsfield units (HU) between pre- and post-surgery CT-values within the ROIs on the uncorrected, O-MAR-corrected and dl-MAR-corrected images. Noise was quantified as standard deviation in HU within the ROIs. Metal artifacts and noise in the post-surgery CT-images were compared using linear multilevel regression models.ResultsMetal artifacts were significantly reduced by O-MAR and dl-MAR in bone (p < 0.001), contralateral bone (O-MAR: p = 0.009; dl-MAR: p < 0.001), gluteus medius (p < 0.001), contralateral gluteus medius (p < 0.001), iliacus (p < 0.001) and contralateral iliacus (O-MAR: p = 0.024; dl-MAR: p < 0.001) compared to uncorrected images. Images corrected with dl-MAR resulted in stronger artifact reduction than images corrected with O-MAR in contralateral bone (p < 0.001), gluteus medius (p = 0.006), contralateral gluteus medius (p < 0.001), iliacus (p = 0.017), and contralateral iliacus (p < 0.001). Noise was reduced by O-MAR in bone (p = 0.009) and gluteus medius (p < 0.001) while noise was reduced by dl-MAR in all ROIs (p < 0.001) in comparison to uncorrected images.Conclusiondl-MAR showed superior metal artifact reduction compared to O-MAR in CT-images with SI joint fusion implants." @default.
- W4366496851 created "2023-04-22" @default.
- W4366496851 creator A5004767156 @default.
- W4366496851 creator A5010287277 @default.
- W4366496851 creator A5022128344 @default.
- W4366496851 creator A5041023599 @default.
- W4366496851 creator A5050567219 @default.
- W4366496851 creator A5078321184 @default.
- W4366496851 creator A5086328878 @default.
- W4366496851 date "2023-06-01" @default.
- W4366496851 modified "2023-09-27" @default.
- W4366496851 title "Is AI the way forward for reducing metal artifacts in CT? Development of a generic deep learning-based method and initial evaluation in patients with sacroiliac joint implants" @default.
- W4366496851 cites W2101891472 @default.
- W4366496851 cites W2133162984 @default.
- W4366496851 cites W2133287637 @default.
- W4366496851 cites W2162339928 @default.
- W4366496851 cites W2167279371 @default.
- W4366496851 cites W2174331432 @default.
- W4366496851 cites W2194775991 @default.
- W4366496851 cites W2520526731 @default.
- W4366496851 cites W2533020866 @default.
- W4366496851 cites W2569525243 @default.
- W4366496851 cites W2753044865 @default.
- W4366496851 cites W2784303718 @default.
- W4366496851 cites W2885150276 @default.
- W4366496851 cites W2963891322 @default.
- W4366496851 cites W2980501212 @default.
- W4366496851 cites W3000464487 @default.
- W4366496851 cites W3087119976 @default.
- W4366496851 cites W3099147628 @default.
- W4366496851 cites W3126423324 @default.
- W4366496851 cites W3130850522 @default.
- W4366496851 cites W3202641460 @default.
- W4366496851 cites W3208757304 @default.
- W4366496851 cites W3215976207 @default.
- W4366496851 cites W4200293808 @default.
- W4366496851 cites W4205993920 @default.
- W4366496851 cites W4206626563 @default.
- W4366496851 cites W4221111000 @default.
- W4366496851 cites W4307923847 @default.
- W4366496851 cites W4362603432 @default.
- W4366496851 doi "https://doi.org/10.1016/j.ejrad.2023.110844" @default.
- W4366496851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37119708" @default.
- W4366496851 hasPublicationYear "2023" @default.
- W4366496851 type Work @default.
- W4366496851 citedByCount "2" @default.
- W4366496851 countsByYear W43664968512023 @default.
- W4366496851 crossrefType "journal-article" @default.
- W4366496851 hasAuthorship W4366496851A5004767156 @default.
- W4366496851 hasAuthorship W4366496851A5010287277 @default.
- W4366496851 hasAuthorship W4366496851A5022128344 @default.
- W4366496851 hasAuthorship W4366496851A5041023599 @default.
- W4366496851 hasAuthorship W4366496851A5050567219 @default.
- W4366496851 hasAuthorship W4366496851A5078321184 @default.
- W4366496851 hasAuthorship W4366496851A5086328878 @default.
- W4366496851 hasBestOaLocation W43664968511 @default.
- W4366496851 hasConcept C126838900 @default.
- W4366496851 hasConcept C141071460 @default.
- W4366496851 hasConcept C154945302 @default.
- W4366496851 hasConcept C187954543 @default.
- W4366496851 hasConcept C2776091176 @default.
- W4366496851 hasConcept C2778614933 @default.
- W4366496851 hasConcept C2779010991 @default.
- W4366496851 hasConcept C2989005 @default.
- W4366496851 hasConcept C36454342 @default.
- W4366496851 hasConcept C41008148 @default.
- W4366496851 hasConcept C544519230 @default.
- W4366496851 hasConcept C68312169 @default.
- W4366496851 hasConcept C71924100 @default.
- W4366496851 hasConceptScore W4366496851C126838900 @default.
- W4366496851 hasConceptScore W4366496851C141071460 @default.
- W4366496851 hasConceptScore W4366496851C154945302 @default.
- W4366496851 hasConceptScore W4366496851C187954543 @default.
- W4366496851 hasConceptScore W4366496851C2776091176 @default.
- W4366496851 hasConceptScore W4366496851C2778614933 @default.
- W4366496851 hasConceptScore W4366496851C2779010991 @default.
- W4366496851 hasConceptScore W4366496851C2989005 @default.
- W4366496851 hasConceptScore W4366496851C36454342 @default.
- W4366496851 hasConceptScore W4366496851C41008148 @default.
- W4366496851 hasConceptScore W4366496851C544519230 @default.
- W4366496851 hasConceptScore W4366496851C68312169 @default.
- W4366496851 hasConceptScore W4366496851C71924100 @default.
- W4366496851 hasFunder F4320307766 @default.
- W4366496851 hasLocation W43664968511 @default.
- W4366496851 hasLocation W43664968512 @default.
- W4366496851 hasOpenAccess W4366496851 @default.
- W4366496851 hasPrimaryLocation W43664968511 @default.
- W4366496851 hasRelatedWork W1568701304 @default.
- W4366496851 hasRelatedWork W1851068779 @default.
- W4366496851 hasRelatedWork W2024917033 @default.
- W4366496851 hasRelatedWork W2123484233 @default.
- W4366496851 hasRelatedWork W214433981 @default.
- W4366496851 hasRelatedWork W2764299427 @default.
- W4366496851 hasRelatedWork W2963012573 @default.
- W4366496851 hasRelatedWork W305983321 @default.
- W4366496851 hasRelatedWork W4206422284 @default.
- W4366496851 hasRelatedWork W4322728551 @default.
- W4366496851 hasVolume "163" @default.