Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366503944> ?p ?o ?g. }
- W4366503944 endingPage "12189" @default.
- W4366503944 startingPage "12181" @default.
- W4366503944 abstract "Real-time monitoring of melt viscosity is one of the many challenges faced in the polymer extrusion process. Viscosity is one of the important metric reflecting material properties during the plastic process. However, viscosity is an indicator that can be evaluated by calculating the evaluation value through temperature, pressure, screw rotation speed, and so on but cannot be directly measured by physical sensors. Melt viscosity should be calculated at the exact melt temperature. Temperature sensors cannot accurately measure the temperature of the melt in the barrel. Soft sensing technique is the best solution for estimating material properties. It just needs some physical sensors and physical formulas. The proposed viscosity soft sensor consists of physical sensors, a temperature estimator, and a simulation analysis software for calculating material properties. Four physical temperature signals, one physical pressure signal, and the simulation properties data are used as the dataset for the temperature estimator. An ensemble machine learning model of temperature estimators consists of random forests (RFs) and convolutional neural networks (CNNs). Melt viscosity, shear stress, and shear rate are calculated by physical formulas. Experimental results show that the proposed temperature estimator predicts that the temperature will reduce the mean absolute error (MAE) from 6.08 to 2.86. Compared with the current work, the prediction error rate of the soft sensor is also reduced from 4% to 1.1%. The proposed soft sensor can be used to better predict polymer melt temperature. Finally, according to the predicting results, the material property scatter chart of viscosity can be precisely plotted under the specific melt temperature. In the past, the melt viscosity could only be measured offline. The proposed method can be added as a plug-in to the existing process to achieve real-time viscosity monitoring." @default.
- W4366503944 created "2023-04-22" @default.
- W4366503944 creator A5036721591 @default.
- W4366503944 creator A5052935780 @default.
- W4366503944 creator A5062898532 @default.
- W4366503944 date "2023-06-01" @default.
- W4366503944 modified "2023-09-29" @default.
- W4366503944 title "A Novel In-Line Polymer Melt Viscosity Sensing System of Integrated Soft Sensor and Machine Learning" @default.
- W4366503944 cites W1543106344 @default.
- W4366503944 cites W1581317207 @default.
- W4366503944 cites W1964564726 @default.
- W4366503944 cites W1976319509 @default.
- W4366503944 cites W1997773058 @default.
- W4366503944 cites W2014989596 @default.
- W4366503944 cites W2022180526 @default.
- W4366503944 cites W2026342123 @default.
- W4366503944 cites W2032111862 @default.
- W4366503944 cites W2042878822 @default.
- W4366503944 cites W2051576668 @default.
- W4366503944 cites W2052257444 @default.
- W4366503944 cites W2053164520 @default.
- W4366503944 cites W2057221319 @default.
- W4366503944 cites W2060509187 @default.
- W4366503944 cites W2063100141 @default.
- W4366503944 cites W2073144427 @default.
- W4366503944 cites W2082188544 @default.
- W4366503944 cites W2089636909 @default.
- W4366503944 cites W2090937338 @default.
- W4366503944 cites W2108008618 @default.
- W4366503944 cites W2108067484 @default.
- W4366503944 cites W2109025004 @default.
- W4366503944 cites W2124283221 @default.
- W4366503944 cites W2130378394 @default.
- W4366503944 cites W2132869795 @default.
- W4366503944 cites W2148246699 @default.
- W4366503944 cites W2170939901 @default.
- W4366503944 cites W2301541953 @default.
- W4366503944 cites W2326425945 @default.
- W4366503944 cites W2539793252 @default.
- W4366503944 cites W2883608678 @default.
- W4366503944 cites W2905244172 @default.
- W4366503944 cites W2957350396 @default.
- W4366503944 cites W2998185082 @default.
- W4366503944 cites W3002638499 @default.
- W4366503944 cites W3010525260 @default.
- W4366503944 cites W3036678219 @default.
- W4366503944 cites W3038434513 @default.
- W4366503944 cites W3110577628 @default.
- W4366503944 cites W3165574415 @default.
- W4366503944 cites W3198125154 @default.
- W4366503944 cites W4205285310 @default.
- W4366503944 doi "https://doi.org/10.1109/jsen.2023.3267682" @default.
- W4366503944 hasPublicationYear "2023" @default.
- W4366503944 type Work @default.
- W4366503944 citedByCount "0" @default.
- W4366503944 crossrefType "journal-article" @default.
- W4366503944 hasAuthorship W4366503944A5036721591 @default.
- W4366503944 hasAuthorship W4366503944A5052935780 @default.
- W4366503944 hasAuthorship W4366503944A5062898532 @default.
- W4366503944 hasConcept C105795698 @default.
- W4366503944 hasConcept C111919701 @default.
- W4366503944 hasConcept C11413529 @default.
- W4366503944 hasConcept C115575686 @default.
- W4366503944 hasConcept C121332964 @default.
- W4366503944 hasConcept C127172972 @default.
- W4366503944 hasConcept C159985019 @default.
- W4366503944 hasConcept C185429906 @default.
- W4366503944 hasConcept C19149912 @default.
- W4366503944 hasConcept C192562407 @default.
- W4366503944 hasConcept C33923547 @default.
- W4366503944 hasConcept C41008148 @default.
- W4366503944 hasConcept C72293138 @default.
- W4366503944 hasConcept C97355855 @default.
- W4366503944 hasConcept C98045186 @default.
- W4366503944 hasConceptScore W4366503944C105795698 @default.
- W4366503944 hasConceptScore W4366503944C111919701 @default.
- W4366503944 hasConceptScore W4366503944C11413529 @default.
- W4366503944 hasConceptScore W4366503944C115575686 @default.
- W4366503944 hasConceptScore W4366503944C121332964 @default.
- W4366503944 hasConceptScore W4366503944C127172972 @default.
- W4366503944 hasConceptScore W4366503944C159985019 @default.
- W4366503944 hasConceptScore W4366503944C185429906 @default.
- W4366503944 hasConceptScore W4366503944C19149912 @default.
- W4366503944 hasConceptScore W4366503944C192562407 @default.
- W4366503944 hasConceptScore W4366503944C33923547 @default.
- W4366503944 hasConceptScore W4366503944C41008148 @default.
- W4366503944 hasConceptScore W4366503944C72293138 @default.
- W4366503944 hasConceptScore W4366503944C97355855 @default.
- W4366503944 hasConceptScore W4366503944C98045186 @default.
- W4366503944 hasIssue "11" @default.
- W4366503944 hasLocation W43665039441 @default.
- W4366503944 hasOpenAccess W4366503944 @default.
- W4366503944 hasPrimaryLocation W43665039441 @default.
- W4366503944 hasRelatedWork W1971719483 @default.
- W4366503944 hasRelatedWork W2039317408 @default.
- W4366503944 hasRelatedWork W2071432325 @default.
- W4366503944 hasRelatedWork W2106362003 @default.
- W4366503944 hasRelatedWork W2364841478 @default.