Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366505800> ?p ?o ?g. }
- W4366505800 endingPage "102725" @default.
- W4366505800 startingPage "102725" @default.
- W4366505800 abstract "The utilisation of supercritical geothermal fluids depends on the assessment of the long-term effects of fluid-rock interaction on flow and transport behaviour. Reactive transport simulations are used for these assessments quantitatively based on high-quality thermodynamic and chemical data, understanding of the thermochemical constraints, and capability for accurate, stable, and rapid simulations. This work explores the precipitation/dissolution behaviour of basalt in water under supercritical conditions (400 °C and 502 bar) based on a comprehensive laboratory study conducted by Passarella (2021). The mineral reactions in the experiment were found to be largely kinetically controlled based on the model results. The final model dissolution rate constants were generally within an order of magnitude of the values calculated using the Arrhenius Law at 400 °C, based on published k25 and Ea values, paired with the reactive surface area estimates following the work of White and Peterson (1990). This indicates that the reaction rates at the experimental supercritical conditions are consistent with those observed at subcritical conditions for each mineral. It is theorised that this is because the properties of supercritical water at high pressures are comparable to subcritical water, specifically in terms of viscosity and the dielectric constant. A similar review of the final model precipitation rate constants showed better agreement with neutral dissolution rates extended to precipitation than the estimates following Horiuti (1957) for the experimental conditions. Mineral alterations during the experiment depended primarily on glass dissolution based on the model. Fluid saturation relative to the other minerals increased from the release of glass dissolution products, affecting their dissolution rates. Glass dissolution was also the primary source of components for secondary mineral formation, including celadonite, which also depended on olivine dissolution to provide magnesium. Upon glass depletion, the dissolution rates of the remaining primary minerals increased, and celadonite dissolved. Chlorite was deposited later in the modelled experiment than the other secondary minerals." @default.
- W4366505800 created "2023-04-22" @default.
- W4366505800 creator A5041331727 @default.
- W4366505800 creator A5041685329 @default.
- W4366505800 creator A5054101753 @default.
- W4366505800 creator A5058544553 @default.
- W4366505800 creator A5083799606 @default.
- W4366505800 date "2023-06-01" @default.
- W4366505800 modified "2023-09-27" @default.
- W4366505800 title "Reactive transport modelling under supercritical conditions" @default.
- W4366505800 cites W1987022182 @default.
- W4366505800 cites W1992116517 @default.
- W4366505800 cites W1996830410 @default.
- W4366505800 cites W2006072415 @default.
- W4366505800 cites W2007967898 @default.
- W4366505800 cites W2012257865 @default.
- W4366505800 cites W2028010755 @default.
- W4366505800 cites W2037317670 @default.
- W4366505800 cites W2055596056 @default.
- W4366505800 cites W2066527077 @default.
- W4366505800 cites W2066964298 @default.
- W4366505800 cites W2069250865 @default.
- W4366505800 cites W2081258920 @default.
- W4366505800 cites W2111473359 @default.
- W4366505800 cites W2113391761 @default.
- W4366505800 cites W2119818932 @default.
- W4366505800 cites W2124781550 @default.
- W4366505800 cites W2131817581 @default.
- W4366505800 cites W2137820527 @default.
- W4366505800 cites W2277533213 @default.
- W4366505800 cites W2321389037 @default.
- W4366505800 cites W2524455441 @default.
- W4366505800 cites W2572542437 @default.
- W4366505800 cites W2581969934 @default.
- W4366505800 cites W2607174110 @default.
- W4366505800 cites W2755316856 @default.
- W4366505800 cites W2965016016 @default.
- W4366505800 cites W2975868238 @default.
- W4366505800 cites W2994956387 @default.
- W4366505800 cites W3149079622 @default.
- W4366505800 cites W3204122655 @default.
- W4366505800 cites W4285585303 @default.
- W4366505800 doi "https://doi.org/10.1016/j.geothermics.2023.102725" @default.
- W4366505800 hasPublicationYear "2023" @default.
- W4366505800 type Work @default.
- W4366505800 citedByCount "0" @default.
- W4366505800 crossrefType "journal-article" @default.
- W4366505800 hasAuthorship W4366505800A5041331727 @default.
- W4366505800 hasAuthorship W4366505800A5041685329 @default.
- W4366505800 hasAuthorship W4366505800A5054101753 @default.
- W4366505800 hasAuthorship W4366505800A5058544553 @default.
- W4366505800 hasAuthorship W4366505800A5083799606 @default.
- W4366505800 hasConcept C107054158 @default.
- W4366505800 hasConcept C114614502 @default.
- W4366505800 hasConcept C118419359 @default.
- W4366505800 hasConcept C121332964 @default.
- W4366505800 hasConcept C147789679 @default.
- W4366505800 hasConcept C148898269 @default.
- W4366505800 hasConcept C153294291 @default.
- W4366505800 hasConcept C185592680 @default.
- W4366505800 hasConcept C199289684 @default.
- W4366505800 hasConcept C33923547 @default.
- W4366505800 hasConcept C62520636 @default.
- W4366505800 hasConcept C86183883 @default.
- W4366505800 hasConcept C88380143 @default.
- W4366505800 hasConcept C93391505 @default.
- W4366505800 hasConcept C95121573 @default.
- W4366505800 hasConcept C97355855 @default.
- W4366505800 hasConcept C9930424 @default.
- W4366505800 hasConceptScore W4366505800C107054158 @default.
- W4366505800 hasConceptScore W4366505800C114614502 @default.
- W4366505800 hasConceptScore W4366505800C118419359 @default.
- W4366505800 hasConceptScore W4366505800C121332964 @default.
- W4366505800 hasConceptScore W4366505800C147789679 @default.
- W4366505800 hasConceptScore W4366505800C148898269 @default.
- W4366505800 hasConceptScore W4366505800C153294291 @default.
- W4366505800 hasConceptScore W4366505800C185592680 @default.
- W4366505800 hasConceptScore W4366505800C199289684 @default.
- W4366505800 hasConceptScore W4366505800C33923547 @default.
- W4366505800 hasConceptScore W4366505800C62520636 @default.
- W4366505800 hasConceptScore W4366505800C86183883 @default.
- W4366505800 hasConceptScore W4366505800C88380143 @default.
- W4366505800 hasConceptScore W4366505800C93391505 @default.
- W4366505800 hasConceptScore W4366505800C95121573 @default.
- W4366505800 hasConceptScore W4366505800C97355855 @default.
- W4366505800 hasConceptScore W4366505800C9930424 @default.
- W4366505800 hasFunder F4320320801 @default.
- W4366505800 hasFunder F4320321983 @default.
- W4366505800 hasLocation W43665058001 @default.
- W4366505800 hasOpenAccess W4366505800 @default.
- W4366505800 hasPrimaryLocation W43665058001 @default.
- W4366505800 hasRelatedWork W166835523 @default.
- W4366505800 hasRelatedWork W1974578308 @default.
- W4366505800 hasRelatedWork W1979957684 @default.
- W4366505800 hasRelatedWork W1999977692 @default.
- W4366505800 hasRelatedWork W2057078592 @default.
- W4366505800 hasRelatedWork W2069775224 @default.
- W4366505800 hasRelatedWork W2105103143 @default.