Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366506475> ?p ?o ?g. }
- W4366506475 endingPage "257" @default.
- W4366506475 startingPage "231" @default.
- W4366506475 abstract "The integration of technologies has made it possible to develop optimal operating conditions at reduced costs, which results in a more sustainable energy transition away from fossil fuels and a step closer towards net-zero emission buildings (NZEB) for sustainable development. In recent years, ground source heat pump has gained recognition as an established thermal technology that can be integrated into smart energy systems to support the sudden rise in energy demand, flatten the quick changes in the supply side, and lower energy costs. On the user side, low-temperature heating and high-temperature cooling borehole coupled heat pumps (BCHP) have gained popularity due to its excellent performance in terms of energy efficiency, sustainability, and simplicity of integration with renewable resources. As a green solution for building space heating/cooling, BCHP systems have the potential to considerably contribute to the CO2 reduction milestones, but they are still underutilized, mostly because of their high initial investment costs. The applications of automation, data retrieval, smart decision making, control optimization, modeling and monitoring, are recent areas where data driven AI algorithms are becoming increasingly significant. AI approaches can help BCHP become more intelligent and offer new opportunities for studying heating and cooling systems. While much research is conducted to improve the design of borehole heat exchanger (BHEx) based heat pump, an efficient control approach is equally essential to achieving long-term performance and a shorter payback period. The objective of the current study is to identify the potential of most recent innovations in the field of data driven machine learning techniques to enhance BCHP operations and performance predictions to meet NZEBs. The explicit implementation challenges linked with BCHPs modeling are pointed out and the requirements needed for setting BCHP control algorithms are presented. Various methods found in the literature studies to come up with more accurate modeling and optimized control for BCHPs, with a special interest for the ones based on data driven machine learning algorithms such as artificial neural networks (ANN), are reviewed, categorized, and their advantages along with limitations are addressed. The latest developments in machine learning algorithms and how they have been utilized in heating/cooling applications are reviewed critically and their significance for Hybrid-BCHP control optimization is presented. Opportunities and limitations associated with their physical implementation on real-time heating/cooling systems are also discussed. In summary, data driven machine learning algorithms can not only be implemented for modeling of BHEx performance, but also can be applied to design and optimization of operational control of Hybrid-BCHP system, while each component's aspect might be intricately related." @default.
- W4366506475 created "2023-04-22" @default.
- W4366506475 creator A5013845301 @default.
- W4366506475 creator A5055126508 @default.
- W4366506475 creator A5057630867 @default.
- W4366506475 creator A5085956978 @default.
- W4366506475 date "2023-06-01" @default.
- W4366506475 modified "2023-09-30" @default.
- W4366506475 title "Optimal design, operational controls, and data-driven machine learning in sustainable borehole heat exchanger coupled heat pumps: Key implementation challenges and advancement opportunities" @default.
- W4366506475 cites W1139905439 @default.
- W4366506475 cites W1167577379 @default.
- W4366506475 cites W1595961235 @default.
- W4366506475 cites W1648942369 @default.
- W4366506475 cites W1839500782 @default.
- W4366506475 cites W1878310685 @default.
- W4366506475 cites W1909870381 @default.
- W4366506475 cites W1964545694 @default.
- W4366506475 cites W1964990752 @default.
- W4366506475 cites W1977432038 @default.
- W4366506475 cites W1979773622 @default.
- W4366506475 cites W1979793758 @default.
- W4366506475 cites W1988716993 @default.
- W4366506475 cites W1994610542 @default.
- W4366506475 cites W1997983401 @default.
- W4366506475 cites W2005366414 @default.
- W4366506475 cites W2006168353 @default.
- W4366506475 cites W2010569978 @default.
- W4366506475 cites W2010744989 @default.
- W4366506475 cites W2014949500 @default.
- W4366506475 cites W2015857587 @default.
- W4366506475 cites W2022650381 @default.
- W4366506475 cites W2027850947 @default.
- W4366506475 cites W2028560228 @default.
- W4366506475 cites W2030574188 @default.
- W4366506475 cites W2031493359 @default.
- W4366506475 cites W2032589491 @default.
- W4366506475 cites W2034283495 @default.
- W4366506475 cites W2035932172 @default.
- W4366506475 cites W2037151063 @default.
- W4366506475 cites W2041829488 @default.
- W4366506475 cites W2042413142 @default.
- W4366506475 cites W2042926483 @default.
- W4366506475 cites W2046136266 @default.
- W4366506475 cites W2046829021 @default.
- W4366506475 cites W2047439355 @default.
- W4366506475 cites W2048721648 @default.
- W4366506475 cites W2059981459 @default.
- W4366506475 cites W2061507426 @default.
- W4366506475 cites W2065867808 @default.
- W4366506475 cites W2072501584 @default.
- W4366506475 cites W2072729967 @default.
- W4366506475 cites W2073595977 @default.
- W4366506475 cites W2076063813 @default.
- W4366506475 cites W2077067235 @default.
- W4366506475 cites W2084350680 @default.
- W4366506475 cites W2090798624 @default.
- W4366506475 cites W2092115846 @default.
- W4366506475 cites W2093604561 @default.
- W4366506475 cites W2130608062 @default.
- W4366506475 cites W2163174124 @default.
- W4366506475 cites W2172188470 @default.
- W4366506475 cites W2286961273 @default.
- W4366506475 cites W2303781951 @default.
- W4366506475 cites W2338084774 @default.
- W4366506475 cites W2412568352 @default.
- W4366506475 cites W2419487185 @default.
- W4366506475 cites W245181115 @default.
- W4366506475 cites W2526678394 @default.
- W4366506475 cites W2529306784 @default.
- W4366506475 cites W2537219359 @default.
- W4366506475 cites W2548451390 @default.
- W4366506475 cites W2548560601 @default.
- W4366506475 cites W2559566715 @default.
- W4366506475 cites W2587347436 @default.
- W4366506475 cites W2593207333 @default.
- W4366506475 cites W2595984151 @default.
- W4366506475 cites W2605026829 @default.
- W4366506475 cites W2625548386 @default.
- W4366506475 cites W2629126622 @default.
- W4366506475 cites W2689215254 @default.
- W4366506475 cites W2735800721 @default.
- W4366506475 cites W2756768254 @default.
- W4366506475 cites W2761875693 @default.
- W4366506475 cites W2765390288 @default.
- W4366506475 cites W2767678610 @default.
- W4366506475 cites W2768448935 @default.
- W4366506475 cites W2769052842 @default.
- W4366506475 cites W2788001476 @default.
- W4366506475 cites W2792332861 @default.
- W4366506475 cites W2793228931 @default.
- W4366506475 cites W2793745435 @default.
- W4366506475 cites W2799294045 @default.
- W4366506475 cites W2810672679 @default.
- W4366506475 cites W2883493287 @default.
- W4366506475 cites W2883738238 @default.
- W4366506475 cites W2885359692 @default.
- W4366506475 cites W2889809585 @default.
- W4366506475 cites W2892964188 @default.