Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366524910> ?p ?o ?g. }
- W4366524910 endingPage "20" @default.
- W4366524910 startingPage "1" @default.
- W4366524910 abstract "Recently, remote sensing community has seen a surge in the use of multimodal data for different tasks such as land cover classification, change detection and many more. However, handling multimodal data requires synergistically using the information from different sources. Currently, deep learning (DL) techniques are being religiously used in multimodal data fusion owing to their superior feature extraction capabilities. But, DL techniques have their share of challenges. Firstly, DL models are mostly constructed in the forward fashion limiting their feature extraction capability. Secondly, multimodal learning is generally addressed in a supervised setting, which leads to high labelled data requirement. Thirdly, the models generally handle each modality separately, thus preventing any cross-modal interaction. Hence, we propose a novel self-supervision oriented method of multimodal remote sensing data fusion. For effective cross-modal learning, our model solves a self-supervised auxiliary task to reconstruct input features of one modality from the extracted features of another modality, thus enabling more representative pre-fusion features. To counter the forward architecture, our model is composed of convolutions both in backward and forward directions, thus creating self-looping connections, leading to a self-correcting framework. To facilitate cross-modal communication, we have incorporated coupling across modality-specific extractors using shared parameters. We evaluate our approach on three remote sensing datasets, namely Houston 2013 and Houston 2018, which are HSI-LiDAR datasets and TU Berlin, which is an HSI-SAR dataset, where we achieve the respective accuracy of 93.08%, 84.59% and 73.21%, thus beating the state of the art by a minimum of 3.02%, 2.23% and 2.84%." @default.
- W4366524910 created "2023-04-22" @default.
- W4366524910 creator A5009437784 @default.
- W4366524910 creator A5020786167 @default.
- W4366524910 date "2023-07-01" @default.
- W4366524910 modified "2023-10-16" @default.
- W4366524910 title "Self-supervision assisted multimodal remote sensing image classification with coupled self-looping convolution networks" @default.
- W4366524910 cites W1965309615 @default.
- W4366524910 cites W1976416886 @default.
- W4366524910 cites W1980038761 @default.
- W4366524910 cites W2056435747 @default.
- W4366524910 cites W2069231830 @default.
- W4366524910 cites W2086220584 @default.
- W4366524910 cites W2086729262 @default.
- W4366524910 cites W2092924074 @default.
- W4366524910 cites W2095871963 @default.
- W4366524910 cites W2136401825 @default.
- W4366524910 cites W2303172903 @default.
- W4366524910 cites W2524214095 @default.
- W4366524910 cites W2619662254 @default.
- W4366524910 cites W2765739551 @default.
- W4366524910 cites W2783651538 @default.
- W4366524910 cites W2890133123 @default.
- W4366524910 cites W2897452159 @default.
- W4366524910 cites W2898504016 @default.
- W4366524910 cites W2911964244 @default.
- W4366524910 cites W2914331134 @default.
- W4366524910 cites W2947295162 @default.
- W4366524910 cites W2950069140 @default.
- W4366524910 cites W2963446712 @default.
- W4366524910 cites W2963610452 @default.
- W4366524910 cites W2963977677 @default.
- W4366524910 cites W2975743894 @default.
- W4366524910 cites W2977002487 @default.
- W4366524910 cites W2980591256 @default.
- W4366524910 cites W2999000103 @default.
- W4366524910 cites W3004968762 @default.
- W4366524910 cites W3016244469 @default.
- W4366524910 cites W3023991509 @default.
- W4366524910 cites W3027439202 @default.
- W4366524910 cites W3038579873 @default.
- W4366524910 cites W3040988483 @default.
- W4366524910 cites W3115223653 @default.
- W4366524910 cites W3122774149 @default.
- W4366524910 cites W3157752331 @default.
- W4366524910 cites W3182496347 @default.
- W4366524910 cites W3198828126 @default.
- W4366524910 cites W3209733456 @default.
- W4366524910 cites W4200068923 @default.
- W4366524910 cites W4200507278 @default.
- W4366524910 cites W4221107392 @default.
- W4366524910 cites W4236714952 @default.
- W4366524910 doi "https://doi.org/10.1016/j.neunet.2023.04.019" @default.
- W4366524910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37141818" @default.
- W4366524910 hasPublicationYear "2023" @default.
- W4366524910 type Work @default.
- W4366524910 citedByCount "0" @default.
- W4366524910 crossrefType "journal-article" @default.
- W4366524910 hasAuthorship W4366524910A5009437784 @default.
- W4366524910 hasAuthorship W4366524910A5020786167 @default.
- W4366524910 hasConcept C107457646 @default.
- W4366524910 hasConcept C108583219 @default.
- W4366524910 hasConcept C119857082 @default.
- W4366524910 hasConcept C124101348 @default.
- W4366524910 hasConcept C127313418 @default.
- W4366524910 hasConcept C138885662 @default.
- W4366524910 hasConcept C153180895 @default.
- W4366524910 hasConcept C154945302 @default.
- W4366524910 hasConcept C162324750 @default.
- W4366524910 hasConcept C185592680 @default.
- W4366524910 hasConcept C187736073 @default.
- W4366524910 hasConcept C188027245 @default.
- W4366524910 hasConcept C2776401178 @default.
- W4366524910 hasConcept C2780226545 @default.
- W4366524910 hasConcept C2780451532 @default.
- W4366524910 hasConcept C41008148 @default.
- W4366524910 hasConcept C41895202 @default.
- W4366524910 hasConcept C45347329 @default.
- W4366524910 hasConcept C48677424 @default.
- W4366524910 hasConcept C50644808 @default.
- W4366524910 hasConcept C52622490 @default.
- W4366524910 hasConcept C62649853 @default.
- W4366524910 hasConcept C71139939 @default.
- W4366524910 hasConceptScore W4366524910C107457646 @default.
- W4366524910 hasConceptScore W4366524910C108583219 @default.
- W4366524910 hasConceptScore W4366524910C119857082 @default.
- W4366524910 hasConceptScore W4366524910C124101348 @default.
- W4366524910 hasConceptScore W4366524910C127313418 @default.
- W4366524910 hasConceptScore W4366524910C138885662 @default.
- W4366524910 hasConceptScore W4366524910C153180895 @default.
- W4366524910 hasConceptScore W4366524910C154945302 @default.
- W4366524910 hasConceptScore W4366524910C162324750 @default.
- W4366524910 hasConceptScore W4366524910C185592680 @default.
- W4366524910 hasConceptScore W4366524910C187736073 @default.
- W4366524910 hasConceptScore W4366524910C188027245 @default.
- W4366524910 hasConceptScore W4366524910C2776401178 @default.
- W4366524910 hasConceptScore W4366524910C2780226545 @default.
- W4366524910 hasConceptScore W4366524910C2780451532 @default.