Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366525344> ?p ?o ?g. }
- W4366525344 endingPage "106589" @default.
- W4366525344 startingPage "106589" @default.
- W4366525344 abstract "Building energy consumption forecasting plays an indispensable role in energy resource management and scheduling. When using an ensemble forecasting model, it is difficult to determine the optimal combination of parameters for integrating the algorithm. Aiming at this problem, a Particle Swarm Optimization-Stacking Improved Ensemble (PStIE) model is proposed for improving the Stacking ensemble model. Composed of 11 Machine Learning (ML) algorithms in the regressor pool, the Particle Swarm Optimization (PSO) algorithm is used to find the optimal combination of base models and a meta-model in Stacking. Meanwhile, a Priority Feature Selection (PFS) method is proposed. Different from the previous single feature selection algorithm, PFS integrates the feature ranking of three feature selection algorithms, calculates the priority coefficient of the features, and selects features with the smallest priority coefficients as candidate feature sets. In addition, when the number of training features of a traditional Stacking model reaches “saturation”, adding more features does not much improve the accuracy of forecasting, even if the training time is increased. Due to the above problems, the PFS method is used to perform feature fusion in the second layer of the PSO-Stacking framework. To evaluate the proposed framework, experiments are conducted using the dataset of hourly electricity consumption of a campus building located in Cambridge, Massachusetts, USA. The experimental results show that the RMSE value of the PSO-Stacking framework is 1.71 lower than that of the commonly used ML algorithms. As a part of the ablation study, when setting different numbers for the feature selection, the PFS method can always choose the best or second-best feature combination. After the features selected by the PFS method are used for subsequent feature fusion, the RMSE score of the PStIE model is 2.62 lower than that without feature fusion." @default.
- W4366525344 created "2023-04-22" @default.
- W4366525344 creator A5018631961 @default.
- W4366525344 creator A5028484458 @default.
- W4366525344 creator A5042125568 @default.
- W4366525344 creator A5049315095 @default.
- W4366525344 creator A5060788206 @default.
- W4366525344 date "2023-08-01" @default.
- W4366525344 modified "2023-09-29" @default.
- W4366525344 title "PSO-Stacking improved ensemble model for campus building energy consumption forecasting based on priority feature selection" @default.
- W4366525344 cites W1786686177 @default.
- W4366525344 cites W2078102233 @default.
- W4366525344 cites W2543580944 @default.
- W4366525344 cites W2754029504 @default.
- W4366525344 cites W2767695914 @default.
- W4366525344 cites W2783365607 @default.
- W4366525344 cites W2792344217 @default.
- W4366525344 cites W2895868491 @default.
- W4366525344 cites W2913712311 @default.
- W4366525344 cites W2943921667 @default.
- W4366525344 cites W2951822430 @default.
- W4366525344 cites W2961951330 @default.
- W4366525344 cites W2979950223 @default.
- W4366525344 cites W2993219986 @default.
- W4366525344 cites W2996221603 @default.
- W4366525344 cites W2996674504 @default.
- W4366525344 cites W3004454690 @default.
- W4366525344 cites W3011699874 @default.
- W4366525344 cites W3016453002 @default.
- W4366525344 cites W3017073098 @default.
- W4366525344 cites W3020886002 @default.
- W4366525344 cites W3021308819 @default.
- W4366525344 cites W3045300245 @default.
- W4366525344 cites W3086976608 @default.
- W4366525344 cites W3092347502 @default.
- W4366525344 cites W3097240822 @default.
- W4366525344 cites W3107372959 @default.
- W4366525344 cites W3122220845 @default.
- W4366525344 cites W3132109148 @default.
- W4366525344 cites W3149839747 @default.
- W4366525344 cites W3157614040 @default.
- W4366525344 cites W3173228546 @default.
- W4366525344 cites W3177561955 @default.
- W4366525344 cites W3183363238 @default.
- W4366525344 cites W3188450664 @default.
- W4366525344 cites W3196956243 @default.
- W4366525344 cites W3197886029 @default.
- W4366525344 cites W3205672873 @default.
- W4366525344 cites W3214016374 @default.
- W4366525344 cites W4200360252 @default.
- W4366525344 cites W4210245872 @default.
- W4366525344 cites W4212861398 @default.
- W4366525344 cites W4226054541 @default.
- W4366525344 cites W4283802727 @default.
- W4366525344 cites W4294531075 @default.
- W4366525344 cites W4312056214 @default.
- W4366525344 doi "https://doi.org/10.1016/j.jobe.2023.106589" @default.
- W4366525344 hasPublicationYear "2023" @default.
- W4366525344 type Work @default.
- W4366525344 citedByCount "0" @default.
- W4366525344 crossrefType "journal-article" @default.
- W4366525344 hasAuthorship W4366525344A5018631961 @default.
- W4366525344 hasAuthorship W4366525344A5028484458 @default.
- W4366525344 hasAuthorship W4366525344A5042125568 @default.
- W4366525344 hasAuthorship W4366525344A5049315095 @default.
- W4366525344 hasAuthorship W4366525344A5060788206 @default.
- W4366525344 hasConcept C11413529 @default.
- W4366525344 hasConcept C119599485 @default.
- W4366525344 hasConcept C119857082 @default.
- W4366525344 hasConcept C119898033 @default.
- W4366525344 hasConcept C121332964 @default.
- W4366525344 hasConcept C124101348 @default.
- W4366525344 hasConcept C126255220 @default.
- W4366525344 hasConcept C127413603 @default.
- W4366525344 hasConcept C138885662 @default.
- W4366525344 hasConcept C148483581 @default.
- W4366525344 hasConcept C154945302 @default.
- W4366525344 hasConcept C206729178 @default.
- W4366525344 hasConcept C2776401178 @default.
- W4366525344 hasConcept C2780165032 @default.
- W4366525344 hasConcept C33347731 @default.
- W4366525344 hasConcept C33923547 @default.
- W4366525344 hasConcept C41008148 @default.
- W4366525344 hasConcept C41895202 @default.
- W4366525344 hasConcept C45942800 @default.
- W4366525344 hasConcept C46141821 @default.
- W4366525344 hasConcept C85617194 @default.
- W4366525344 hasConceptScore W4366525344C11413529 @default.
- W4366525344 hasConceptScore W4366525344C119599485 @default.
- W4366525344 hasConceptScore W4366525344C119857082 @default.
- W4366525344 hasConceptScore W4366525344C119898033 @default.
- W4366525344 hasConceptScore W4366525344C121332964 @default.
- W4366525344 hasConceptScore W4366525344C124101348 @default.
- W4366525344 hasConceptScore W4366525344C126255220 @default.
- W4366525344 hasConceptScore W4366525344C127413603 @default.
- W4366525344 hasConceptScore W4366525344C138885662 @default.
- W4366525344 hasConceptScore W4366525344C148483581 @default.
- W4366525344 hasConceptScore W4366525344C154945302 @default.