Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366543007> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4366543007 endingPage "101616" @default.
- W4366543007 startingPage "101616" @default.
- W4366543007 abstract "In randomized clinical trials with a time-to-event outcome, the intervention effect is usually quantified by a hazard ratio. While its interpretability is debatable, it also relies on the proportional hazards assumption. Alternative measures could be more relevant, such as the difference in restricted mean survival time (ΔRMST) between the intervention and control groups up to time t*. The intervention effect measured by the ΔRMST is not relying on the proportional hazards assumption and is easily interpretable as the expected survival duration gain due to intervention over t*. In cluster randomized trials (CRTs), social units are randomized to intervention or control groups, inducing a correlation between the survival times of the subjects of a same cluster. In a previous work, we proposed the use of pseudo-values regression for the ΔRMST estimation in CRTs. Pseudo-values regression consists in computing pseudo-values for each individual and considering them as the dependent variable of a generalized linear model fitted by generalized estimating equations (GEE). From a simulation study, we concluded that this method well estimated the variance and controlled the type I error, under both proportional and non-proportional hazards assumption, when there is a sufficient total number of clusters (≥50). However, we observed an inflated type I error rate with less than 50 clusters which could be explained by the fact that the method relies on a GEE approach, known to increase the type I error rate in case of a limited number of clusters. Here we aim to assess and compare several approaches to correct the small-sample bias of the variance estimator in pseudo-values regression for ΔRMST in CRTs with small numbers of clusters. We evaluate the performances of four bias-corrected variance estimators developed by Mancl and DeRouen (2001), Kauermann and Carroll (2001), Fay and Graubard (2001) and Morel et al. (2003) to directly correct the small-sample bias of the variance estimator in GEE. In addition, we combine the four small-sample correction methods with a Student distribution to account for the variability of the standard error estimator, instead of the usual normal distribution of the Wald test statistic. We compare the methods by using a simulation study with several scenarios (number of clusters, mean cluster size, coefficient of variation of the cluster sizes, intervention effect, degree of clustering). The simulation study performances are assessed through the relative bias in estimating the variance, the type I error, the coverage rate, the relative bias in estimating the intervention effect and the power. The relative bias in estimating the variance, in absolute value, for the four bias-corrected variance estimators, do not exceed 10% in most of the scenarios, but could achieve 20% when the number of clusters is very limited. Across all scenarios, the bias-corrected variance estimators combined with the Student distribution show better performance compared to the normal distribution. The type I error rates are closer to the 5% nominal rate and the coverage rates are closer to 95%. All the methods lead to negligible relative bias in estimating the intervention effect. This work opens the way for estimating a ΔRMST in presence of correlated time-to-event induced by CRT study design. We specifically propose the use of pseudo-values regression to correctly assessed the intervention effect and its variance in case of a limited number of clusters. Cluster randomised trial, Time-to-event outcome, Restricted mean survival time, Pseudo-values, Small samples Les auteurs n'ont pas précisé leurs éventuels liens d'intérêts." @default.
- W4366543007 created "2023-04-22" @default.
- W4366543007 creator A5005380544 @default.
- W4366543007 creator A5023166540 @default.
- W4366543007 creator A5041577256 @default.
- W4366543007 creator A5049434713 @default.
- W4366543007 creator A5065148852 @default.
- W4366543007 date "2023-05-01" @default.
- W4366543007 modified "2023-09-30" @default.
- W4366543007 title "CO5.1 - Improving variance estimation for pseudo-values regression for restricted mean survival time in small sample cluster randomized trials" @default.
- W4366543007 doi "https://doi.org/10.1016/j.respe.2023.101616" @default.
- W4366543007 hasPublicationYear "2023" @default.
- W4366543007 type Work @default.
- W4366543007 citedByCount "0" @default.
- W4366543007 crossrefType "journal-article" @default.
- W4366543007 hasAuthorship W4366543007A5005380544 @default.
- W4366543007 hasAuthorship W4366543007A5023166540 @default.
- W4366543007 hasAuthorship W4366543007A5041577256 @default.
- W4366543007 hasAuthorship W4366543007A5049434713 @default.
- W4366543007 hasAuthorship W4366543007A5065148852 @default.
- W4366543007 hasConcept C105795698 @default.
- W4366543007 hasConcept C119857082 @default.
- W4366543007 hasConcept C121955636 @default.
- W4366543007 hasConcept C129848803 @default.
- W4366543007 hasConcept C141071460 @default.
- W4366543007 hasConcept C144133560 @default.
- W4366543007 hasConcept C149782125 @default.
- W4366543007 hasConcept C152877465 @default.
- W4366543007 hasConcept C164866538 @default.
- W4366543007 hasConcept C168563851 @default.
- W4366543007 hasConcept C196083921 @default.
- W4366543007 hasConcept C197656967 @default.
- W4366543007 hasConcept C199360897 @default.
- W4366543007 hasConcept C207103383 @default.
- W4366543007 hasConcept C27403532 @default.
- W4366543007 hasConcept C2781067378 @default.
- W4366543007 hasConcept C33923547 @default.
- W4366543007 hasConcept C41008148 @default.
- W4366543007 hasConcept C44249647 @default.
- W4366543007 hasConcept C48921125 @default.
- W4366543007 hasConcept C50382708 @default.
- W4366543007 hasConcept C71924100 @default.
- W4366543007 hasConceptScore W4366543007C105795698 @default.
- W4366543007 hasConceptScore W4366543007C119857082 @default.
- W4366543007 hasConceptScore W4366543007C121955636 @default.
- W4366543007 hasConceptScore W4366543007C129848803 @default.
- W4366543007 hasConceptScore W4366543007C141071460 @default.
- W4366543007 hasConceptScore W4366543007C144133560 @default.
- W4366543007 hasConceptScore W4366543007C149782125 @default.
- W4366543007 hasConceptScore W4366543007C152877465 @default.
- W4366543007 hasConceptScore W4366543007C164866538 @default.
- W4366543007 hasConceptScore W4366543007C168563851 @default.
- W4366543007 hasConceptScore W4366543007C196083921 @default.
- W4366543007 hasConceptScore W4366543007C197656967 @default.
- W4366543007 hasConceptScore W4366543007C199360897 @default.
- W4366543007 hasConceptScore W4366543007C207103383 @default.
- W4366543007 hasConceptScore W4366543007C27403532 @default.
- W4366543007 hasConceptScore W4366543007C2781067378 @default.
- W4366543007 hasConceptScore W4366543007C33923547 @default.
- W4366543007 hasConceptScore W4366543007C41008148 @default.
- W4366543007 hasConceptScore W4366543007C44249647 @default.
- W4366543007 hasConceptScore W4366543007C48921125 @default.
- W4366543007 hasConceptScore W4366543007C50382708 @default.
- W4366543007 hasConceptScore W4366543007C71924100 @default.
- W4366543007 hasLocation W43665430071 @default.
- W4366543007 hasOpenAccess W4366543007 @default.
- W4366543007 hasPrimaryLocation W43665430071 @default.
- W4366543007 hasRelatedWork W1973506055 @default.
- W4366543007 hasRelatedWork W1992859205 @default.
- W4366543007 hasRelatedWork W2016201981 @default.
- W4366543007 hasRelatedWork W2075875797 @default.
- W4366543007 hasRelatedWork W2083403230 @default.
- W4366543007 hasRelatedWork W2110861740 @default.
- W4366543007 hasRelatedWork W2135760566 @default.
- W4366543007 hasRelatedWork W2167069581 @default.
- W4366543007 hasRelatedWork W2323235224 @default.
- W4366543007 hasRelatedWork W2014601929 @default.
- W4366543007 hasVolume "71" @default.
- W4366543007 isParatext "false" @default.
- W4366543007 isRetracted "false" @default.
- W4366543007 workType "article" @default.