Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366548144> ?p ?o ?g. }
- W4366548144 endingPage "2515" @default.
- W4366548144 startingPage "2503" @default.
- W4366548144 abstract "Abstract The large variations of polyp sizes and shapes and the close resemblances of polyps to their surroundings call for features with long‐range information in rich scales and strong discrimination. This article proposes two parallel structured modules for building those features. One is the Transformer Inception module (TI) which applies Transformers with different reception fields in parallel to input features and thus enriches them with more long‐range information in more scales. The other is the Local‐Detail Augmentation module (LDA) which applies the spatial and channel attentions in parallel to each block and thus locally augments the features from two complementary dimensions for more object details. Integrating TI and LDA, a new Transformer encoder based framework, Parallel‐Enhanced Network (PENet), is proposed, where LDA is specifically adopted twice in a coarse‐to‐fine way for accurate prediction. PENet is efficient in segmenting polyps with different sizes and shapes without the interference from the background tissues. Experimental comparisons with state‐of‐the‐arts methods show its merits." @default.
- W4366548144 created "2023-04-22" @default.
- W4366548144 creator A5015200358 @default.
- W4366548144 creator A5033676752 @default.
- W4366548144 creator A5057821256 @default.
- W4366548144 creator A5059010780 @default.
- W4366548144 creator A5061759611 @default.
- W4366548144 creator A5073926786 @default.
- W4366548144 creator A5083483735 @default.
- W4366548144 date "2023-04-20" @default.
- W4366548144 modified "2023-10-14" @default.
- W4366548144 title "Parallel matters: Efficient polyp segmentation with parallel structured feature augmentation modules" @default.
- W4366548144 cites W1901129140 @default.
- W4366548144 cites W1987869189 @default.
- W4366548144 cites W1994922096 @default.
- W4366548144 cites W2008359794 @default.
- W4366548144 cites W2021088830 @default.
- W4366548144 cites W2034269173 @default.
- W4366548144 cites W2037227137 @default.
- W4366548144 cites W2077474654 @default.
- W4366548144 cites W2097117768 @default.
- W4366548144 cites W2156967881 @default.
- W4366548144 cites W2285968993 @default.
- W4366548144 cites W2314720829 @default.
- W4366548144 cites W2317582029 @default.
- W4366548144 cites W2593488799 @default.
- W4366548144 cites W2884585870 @default.
- W4366548144 cites W2917790938 @default.
- W4366548144 cites W2917989249 @default.
- W4366548144 cites W2962927567 @default.
- W4366548144 cites W2999580839 @default.
- W4366548144 cites W3023282579 @default.
- W4366548144 cites W3090492687 @default.
- W4366548144 cites W3091630951 @default.
- W4366548144 cites W3092344722 @default.
- W4366548144 cites W3104061658 @default.
- W4366548144 cites W3106168076 @default.
- W4366548144 cites W3131500599 @default.
- W4366548144 cites W3132018008 @default.
- W4366548144 cites W3134036841 @default.
- W4366548144 cites W3135262214 @default.
- W4366548144 cites W3138516171 @default.
- W4366548144 cites W3155387234 @default.
- W4366548144 cites W3168491317 @default.
- W4366548144 cites W3171038842 @default.
- W4366548144 cites W3175515048 @default.
- W4366548144 cites W3175617055 @default.
- W4366548144 cites W3199502724 @default.
- W4366548144 cites W3199543531 @default.
- W4366548144 cites W3203497085 @default.
- W4366548144 cites W3204166336 @default.
- W4366548144 cites W3206381516 @default.
- W4366548144 cites W4213019189 @default.
- W4366548144 cites W4214493665 @default.
- W4366548144 cites W4214561053 @default.
- W4366548144 cites W4214633470 @default.
- W4366548144 cites W4214636423 @default.
- W4366548144 cites W4224232907 @default.
- W4366548144 cites W4226068227 @default.
- W4366548144 cites W4285303086 @default.
- W4366548144 cites W4289822973 @default.
- W4366548144 cites W4295915728 @default.
- W4366548144 cites W4313007769 @default.
- W4366548144 cites W4362603432 @default.
- W4366548144 doi "https://doi.org/10.1049/ipr2.12813" @default.
- W4366548144 hasPublicationYear "2023" @default.
- W4366548144 type Work @default.
- W4366548144 citedByCount "0" @default.
- W4366548144 crossrefType "journal-article" @default.
- W4366548144 hasAuthorship W4366548144A5015200358 @default.
- W4366548144 hasAuthorship W4366548144A5033676752 @default.
- W4366548144 hasAuthorship W4366548144A5057821256 @default.
- W4366548144 hasAuthorship W4366548144A5059010780 @default.
- W4366548144 hasAuthorship W4366548144A5061759611 @default.
- W4366548144 hasAuthorship W4366548144A5073926786 @default.
- W4366548144 hasAuthorship W4366548144A5083483735 @default.
- W4366548144 hasBestOaLocation W43665481441 @default.
- W4366548144 hasConcept C111919701 @default.
- W4366548144 hasConcept C118505674 @default.
- W4366548144 hasConcept C121332964 @default.
- W4366548144 hasConcept C124504099 @default.
- W4366548144 hasConcept C125308379 @default.
- W4366548144 hasConcept C138885662 @default.
- W4366548144 hasConcept C144133560 @default.
- W4366548144 hasConcept C153180895 @default.
- W4366548144 hasConcept C154945302 @default.
- W4366548144 hasConcept C162853370 @default.
- W4366548144 hasConcept C165801399 @default.
- W4366548144 hasConcept C2776401178 @default.
- W4366548144 hasConcept C41008148 @default.
- W4366548144 hasConcept C41895202 @default.
- W4366548144 hasConcept C62520636 @default.
- W4366548144 hasConcept C66322947 @default.
- W4366548144 hasConcept C89600930 @default.
- W4366548144 hasConceptScore W4366548144C111919701 @default.
- W4366548144 hasConceptScore W4366548144C118505674 @default.
- W4366548144 hasConceptScore W4366548144C121332964 @default.
- W4366548144 hasConceptScore W4366548144C124504099 @default.