Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366548478> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4366548478 abstract "In order to leverage the potential benefits of technology to speech and language therapy language assessment processes, large samples of naturalistic language data must be collected and analysed. These samples enable the development and testing of novel software applications with data relevant to their intended clinical application. However, the collection and analysis of such data can be costly and time-consuming. This paper describes the development of a novel application designed to elicit and analyse young children's story retell narratives to provide metrics regarding the child's use of grammatical structures (micro-structure) and story grammar (macro-structure elements). Key aspects for development were (1) methods to collect story retells, ensure accurate transcription and segmentation of utterances; (2) testing the reliability of the application to analyse micro-structure elements in children's story retells and (3) development of an algorithm to analyse narrative macro-structure elements.A co-design process was used to design an app which would be used to gather story retell samples from children using mobile technology. A citizen science approach using mainstream marketing via online channels, the media and billboard ads was used to encourage participation from children across the United Kingdom. A stratified sampling framework was used to ensure a representative sample was obtained across age, gender and five bands of socio-economic disadvantage using partial postcodes and the relevant indices of deprivation. Trained Research Associates (RA) completed transcription and micro and macro-structure analysis of the language samples. Methods to improve transcriptions produced by automated speech recognition were developed to enable reliable analysis. RA micro-structure analyses were compared to those generated by the digital application to test its reliability using intra-class correlation (ICC). RA macro-structure analyses were used to train an algorithm to produce macro-structure metrics. Finally, results from the macro-structure algorithm were compared against a subset of RA macro-structure analyses not used in training to test its reliability using ICC.A total of 4,517 profiles were made in the app used in data collection and from these participants a final set of 599 were drawn which fulfilled the stratified sampling criteria. The story retells ranged from 35.66 s to 251.4 s in length and had word counts ranging from 37 to 496, with a mean of 148.29 words. ICC between the RA and application micro-structure analyses ranged from 0.213 to 1.0 with 41 out of a total of 44 comparisons reaching 'good' (0.70-0.90) or 'excellent' (>0.90) levels of reliability. ICC between the RA and application macro-structure features were completed for 85 samples not used in training the algorithm. ICC ranged from 0.5577 to 0.939 with 5 out of 7 metrics being 'good' or better.Work to date has demonstrated the potential of semi-automated transcription and linguistic analyses to provide reliable, detailed and informative narrative language analysis for young children and for the use of citizen science based approaches using mobile technologies to collect representative and informative research data. Clinical evaluation of this new app is ongoing, so we do not yet have data documenting its developmental or clinical sensitivity and specificity." @default.
- W4366548478 created "2023-04-22" @default.
- W4366548478 creator A5008085298 @default.
- W4366548478 creator A5026290139 @default.
- W4366548478 creator A5046768726 @default.
- W4366548478 creator A5087930781 @default.
- W4366548478 date "2023-04-20" @default.
- W4366548478 modified "2023-10-14" @default.
- W4366548478 title "The development of a digital story-retell elicitation and analysis tool through citizen science data collection, software development and machine learning" @default.
- W4366548478 cites W1970209023 @default.
- W4366548478 cites W1975038450 @default.
- W4366548478 cites W1999465661 @default.
- W4366548478 cites W2014026498 @default.
- W4366548478 cites W2016116481 @default.
- W4366548478 cites W2050616554 @default.
- W4366548478 cites W2085581407 @default.
- W4366548478 cites W2093151602 @default.
- W4366548478 cites W2121649056 @default.
- W4366548478 cites W2151915598 @default.
- W4366548478 cites W2153278201 @default.
- W4366548478 cites W2158828712 @default.
- W4366548478 cites W2164296498 @default.
- W4366548478 cites W2327037637 @default.
- W4366548478 cites W2412354562 @default.
- W4366548478 cites W2471087218 @default.
- W4366548478 cites W2599350544 @default.
- W4366548478 cites W2762595699 @default.
- W4366548478 cites W2779407062 @default.
- W4366548478 cites W2889212027 @default.
- W4366548478 cites W2890793059 @default.
- W4366548478 cites W2983324485 @default.
- W4366548478 cites W2989026243 @default.
- W4366548478 cites W2997685444 @default.
- W4366548478 cites W3000354448 @default.
- W4366548478 cites W3126276433 @default.
- W4366548478 cites W3210043497 @default.
- W4366548478 cites W4200044681 @default.
- W4366548478 cites W4223480641 @default.
- W4366548478 cites W4288067802 @default.
- W4366548478 doi "https://doi.org/10.3389/fpsyg.2023.989499" @default.
- W4366548478 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37287780" @default.
- W4366548478 hasPublicationYear "2023" @default.
- W4366548478 type Work @default.
- W4366548478 citedByCount "0" @default.
- W4366548478 crossrefType "journal-article" @default.
- W4366548478 hasAuthorship W4366548478A5008085298 @default.
- W4366548478 hasAuthorship W4366548478A5026290139 @default.
- W4366548478 hasAuthorship W4366548478A5046768726 @default.
- W4366548478 hasAuthorship W4366548478A5087930781 @default.
- W4366548478 hasBestOaLocation W43665484781 @default.
- W4366548478 hasConcept C138885662 @default.
- W4366548478 hasConcept C153083717 @default.
- W4366548478 hasConcept C154945302 @default.
- W4366548478 hasConcept C166955791 @default.
- W4366548478 hasConcept C199033989 @default.
- W4366548478 hasConcept C199360897 @default.
- W4366548478 hasConcept C204321447 @default.
- W4366548478 hasConcept C2522767166 @default.
- W4366548478 hasConcept C2777904410 @default.
- W4366548478 hasConcept C41008148 @default.
- W4366548478 hasConcept C41895202 @default.
- W4366548478 hasConcept C49774154 @default.
- W4366548478 hasConceptScore W4366548478C138885662 @default.
- W4366548478 hasConceptScore W4366548478C153083717 @default.
- W4366548478 hasConceptScore W4366548478C154945302 @default.
- W4366548478 hasConceptScore W4366548478C166955791 @default.
- W4366548478 hasConceptScore W4366548478C199033989 @default.
- W4366548478 hasConceptScore W4366548478C199360897 @default.
- W4366548478 hasConceptScore W4366548478C204321447 @default.
- W4366548478 hasConceptScore W4366548478C2522767166 @default.
- W4366548478 hasConceptScore W4366548478C2777904410 @default.
- W4366548478 hasConceptScore W4366548478C41008148 @default.
- W4366548478 hasConceptScore W4366548478C41895202 @default.
- W4366548478 hasConceptScore W4366548478C49774154 @default.
- W4366548478 hasLocation W43665484781 @default.
- W4366548478 hasLocation W43665484782 @default.
- W4366548478 hasLocation W43665484783 @default.
- W4366548478 hasLocation W43665484784 @default.
- W4366548478 hasOpenAccess W4366548478 @default.
- W4366548478 hasPrimaryLocation W43665484781 @default.
- W4366548478 hasRelatedWork W2030250808 @default.
- W4366548478 hasRelatedWork W2293457016 @default.
- W4366548478 hasRelatedWork W2355862304 @default.
- W4366548478 hasRelatedWork W2356108042 @default.
- W4366548478 hasRelatedWork W2376796979 @default.
- W4366548478 hasRelatedWork W2379285345 @default.
- W4366548478 hasRelatedWork W2379418341 @default.
- W4366548478 hasRelatedWork W2380054981 @default.
- W4366548478 hasRelatedWork W2393110101 @default.
- W4366548478 hasRelatedWork W2789919619 @default.
- W4366548478 hasVolume "14" @default.
- W4366548478 isParatext "false" @default.
- W4366548478 isRetracted "false" @default.
- W4366548478 workType "article" @default.