Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366549247> ?p ?o ?g. }
- W4366549247 abstract "Clinical decision support tools (DSTs), powered by Artificial Intelligence (AI), promise to improve clinicians’ diagnostic and treatment decision-making. However, no AI model is always correct. DSTs must enable clinicians to validate each AI suggestion, convincing them to take the correct suggestions while rejecting its errors. While prior work often tried to do so by explaining AI’s inner workings or performance, we chose a different approach: We investigated how clinicians validated each other’s suggestions in practice (often by referencing scientific literature) and designed a new DST that embraces these naturalistic interactions. This design uses GPT-3 to draw literature evidence that shows the AI suggestions’ robustness and applicability (or the lack thereof). A prototyping study with clinicians from three disease areas proved this approach promising. Clinicians’ interactions with the prototype also revealed new design and research opportunities around (1) harnessing the complementary strengths of literature-based and predictive decision supports; (2) mitigating risks of de-skilling clinicians; and (3) offering low-data decision support with literature." @default.
- W4366549247 created "2023-04-22" @default.
- W4366549247 creator A5016600320 @default.
- W4366549247 creator A5017881649 @default.
- W4366549247 creator A5028772518 @default.
- W4366549247 creator A5030172989 @default.
- W4366549247 creator A5052388341 @default.
- W4366549247 creator A5072174402 @default.
- W4366549247 creator A5075323750 @default.
- W4366549247 date "2023-04-19" @default.
- W4366549247 modified "2023-10-14" @default.
- W4366549247 title "Harnessing Biomedical Literature to Calibrate Clinicians’ Trust in AI Decision Support Systems" @default.
- W4366549247 cites W125348581 @default.
- W4366549247 cites W1967582886 @default.
- W4366549247 cites W1997581058 @default.
- W4366549247 cites W2033498751 @default.
- W4366549247 cites W2066514795 @default.
- W4366549247 cites W2083365634 @default.
- W4366549247 cites W2086589423 @default.
- W4366549247 cites W2087641610 @default.
- W4366549247 cites W2092601000 @default.
- W4366549247 cites W2097110957 @default.
- W4366549247 cites W2106952837 @default.
- W4366549247 cites W2107265617 @default.
- W4366549247 cites W2120109270 @default.
- W4366549247 cites W2132781587 @default.
- W4366549247 cites W2135037015 @default.
- W4366549247 cites W2397156396 @default.
- W4366549247 cites W2475260156 @default.
- W4366549247 cites W2548932017 @default.
- W4366549247 cites W2785593065 @default.
- W4366549247 cites W2911489562 @default.
- W4366549247 cites W2942444880 @default.
- W4366549247 cites W2963395533 @default.
- W4366549247 cites W2966362896 @default.
- W4366549247 cites W2970837303 @default.
- W4366549247 cites W3000152264 @default.
- W4366549247 cites W3002972902 @default.
- W4366549247 cites W3016484843 @default.
- W4366549247 cites W3100279624 @default.
- W4366549247 cites W3105396370 @default.
- W4366549247 cites W3107766008 @default.
- W4366549247 cites W3118721495 @default.
- W4366549247 cites W3127032480 @default.
- W4366549247 cites W3199643281 @default.
- W4366549247 cites W3209901185 @default.
- W4366549247 cites W3212368439 @default.
- W4366549247 cites W4200150186 @default.
- W4366549247 cites W4224982959 @default.
- W4366549247 cites W4225105010 @default.
- W4366549247 cites W4288359828 @default.
- W4366549247 cites W4306694247 @default.
- W4366549247 doi "https://doi.org/10.1145/3544548.3581393" @default.
- W4366549247 hasPublicationYear "2023" @default.
- W4366549247 type Work @default.
- W4366549247 citedByCount "2" @default.
- W4366549247 countsByYear W43665492472023 @default.
- W4366549247 crossrefType "proceedings-article" @default.
- W4366549247 hasAuthorship W4366549247A5016600320 @default.
- W4366549247 hasAuthorship W4366549247A5017881649 @default.
- W4366549247 hasAuthorship W4366549247A5028772518 @default.
- W4366549247 hasAuthorship W4366549247A5030172989 @default.
- W4366549247 hasAuthorship W4366549247A5052388341 @default.
- W4366549247 hasAuthorship W4366549247A5072174402 @default.
- W4366549247 hasAuthorship W4366549247A5075323750 @default.
- W4366549247 hasBestOaLocation W43665492471 @default.
- W4366549247 hasConcept C104317684 @default.
- W4366549247 hasConcept C107327155 @default.
- W4366549247 hasConcept C127413603 @default.
- W4366549247 hasConcept C154945302 @default.
- W4366549247 hasConcept C157170001 @default.
- W4366549247 hasConcept C185592680 @default.
- W4366549247 hasConcept C2522767166 @default.
- W4366549247 hasConcept C41008148 @default.
- W4366549247 hasConcept C539667460 @default.
- W4366549247 hasConcept C55493867 @default.
- W4366549247 hasConcept C56739046 @default.
- W4366549247 hasConcept C63479239 @default.
- W4366549247 hasConcept C63527458 @default.
- W4366549247 hasConceptScore W4366549247C104317684 @default.
- W4366549247 hasConceptScore W4366549247C107327155 @default.
- W4366549247 hasConceptScore W4366549247C127413603 @default.
- W4366549247 hasConceptScore W4366549247C154945302 @default.
- W4366549247 hasConceptScore W4366549247C157170001 @default.
- W4366549247 hasConceptScore W4366549247C185592680 @default.
- W4366549247 hasConceptScore W4366549247C2522767166 @default.
- W4366549247 hasConceptScore W4366549247C41008148 @default.
- W4366549247 hasConceptScore W4366549247C539667460 @default.
- W4366549247 hasConceptScore W4366549247C55493867 @default.
- W4366549247 hasConceptScore W4366549247C56739046 @default.
- W4366549247 hasConceptScore W4366549247C63479239 @default.
- W4366549247 hasConceptScore W4366549247C63527458 @default.
- W4366549247 hasLocation W43665492471 @default.
- W4366549247 hasOpenAccess W4366549247 @default.
- W4366549247 hasPrimaryLocation W43665492471 @default.
- W4366549247 hasRelatedWork W1569026615 @default.
- W4366549247 hasRelatedWork W1973533593 @default.
- W4366549247 hasRelatedWork W2046929026 @default.
- W4366549247 hasRelatedWork W2294280211 @default.
- W4366549247 hasRelatedWork W2791725133 @default.