Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366549780> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4366549780 abstract "Abstract The DynaSig-ML (‘Dynamical Signatures–Machine Learning’) Python package allows the efficient, user-friendly exploration of 3D dynamics–function relationships in biomolecules, using datasets of experimental measures from large numbers of sequence variants. It does so by predicting 3D structural dynamics for every variant using the Elastic Network Contact Model (ENCoM), a sequence-sensitive coarse-grained normal mode analysis model. Dynamical Signatures represent the fluctuation at every position in the biomolecule and are used as features fed into machine learning models of the user’s choice. Once trained, these models can be used to predict experimental outcomes for theoretical variants. The whole pipeline can be run with just a few lines of Python and modest computational resources. The compute-intensive steps are easily parallelized in the case of either large biomolecules or vast amounts of sequence variants. As an example application, we use the DynaSig-ML package to predict the maturation efficiency of human microRNA miR-125a variants from high-throughput enzymatic assays. Availability and implementation DynaSig-ML is open-source software available at https://github.com/gregorpatof/dynasigml_package." @default.
- W4366549780 created "2023-04-22" @default.
- W4366549780 creator A5019812910 @default.
- W4366549780 creator A5071344692 @default.
- W4366549780 creator A5081692128 @default.
- W4366549780 date "2023-04-01" @default.
- W4366549780 modified "2023-09-30" @default.
- W4366549780 title "The DynaSig-ML Python package: automated learning of biomolecular dynamics-function relationships" @default.
- W4366549780 cites W1988409793 @default.
- W4366549780 cites W1995164506 @default.
- W4366549780 cites W2011301426 @default.
- W4366549780 cites W2122713363 @default.
- W4366549780 cites W2135025026 @default.
- W4366549780 cites W2951264695 @default.
- W4366549780 cites W3137338205 @default.
- W4366549780 cites W3190423635 @default.
- W4366549780 cites W4311472042 @default.
- W4366549780 doi "https://doi.org/10.1093/bioinformatics/btad180" @default.
- W4366549780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37079725" @default.
- W4366549780 hasPublicationYear "2023" @default.
- W4366549780 type Work @default.
- W4366549780 citedByCount "0" @default.
- W4366549780 crossrefType "journal-article" @default.
- W4366549780 hasAuthorship W4366549780A5019812910 @default.
- W4366549780 hasAuthorship W4366549780A5071344692 @default.
- W4366549780 hasAuthorship W4366549780A5081692128 @default.
- W4366549780 hasBestOaLocation W43665497801 @default.
- W4366549780 hasConcept C124101348 @default.
- W4366549780 hasConcept C154945302 @default.
- W4366549780 hasConcept C199360897 @default.
- W4366549780 hasConcept C2777904410 @default.
- W4366549780 hasConcept C2778112365 @default.
- W4366549780 hasConcept C3020440742 @default.
- W4366549780 hasConcept C41008148 @default.
- W4366549780 hasConcept C43521106 @default.
- W4366549780 hasConcept C459310 @default.
- W4366549780 hasConcept C519991488 @default.
- W4366549780 hasConcept C54355233 @default.
- W4366549780 hasConcept C86803240 @default.
- W4366549780 hasConceptScore W4366549780C124101348 @default.
- W4366549780 hasConceptScore W4366549780C154945302 @default.
- W4366549780 hasConceptScore W4366549780C199360897 @default.
- W4366549780 hasConceptScore W4366549780C2777904410 @default.
- W4366549780 hasConceptScore W4366549780C2778112365 @default.
- W4366549780 hasConceptScore W4366549780C3020440742 @default.
- W4366549780 hasConceptScore W4366549780C41008148 @default.
- W4366549780 hasConceptScore W4366549780C43521106 @default.
- W4366549780 hasConceptScore W4366549780C459310 @default.
- W4366549780 hasConceptScore W4366549780C519991488 @default.
- W4366549780 hasConceptScore W4366549780C54355233 @default.
- W4366549780 hasConceptScore W4366549780C86803240 @default.
- W4366549780 hasFunder F4320314000 @default.
- W4366549780 hasFunder F4320334506 @default.
- W4366549780 hasIssue "4" @default.
- W4366549780 hasLocation W43665497801 @default.
- W4366549780 hasLocation W43665497802 @default.
- W4366549780 hasLocation W43665497803 @default.
- W4366549780 hasLocation W43665497804 @default.
- W4366549780 hasLocation W43665497805 @default.
- W4366549780 hasOpenAccess W4366549780 @default.
- W4366549780 hasPrimaryLocation W43665497801 @default.
- W4366549780 hasRelatedWork W1970803054 @default.
- W4366549780 hasRelatedWork W2014974887 @default.
- W4366549780 hasRelatedWork W2114055146 @default.
- W4366549780 hasRelatedWork W2149263892 @default.
- W4366549780 hasRelatedWork W2575599130 @default.
- W4366549780 hasRelatedWork W2745015246 @default.
- W4366549780 hasRelatedWork W2913537090 @default.
- W4366549780 hasRelatedWork W2950999793 @default.
- W4366549780 hasRelatedWork W3041331042 @default.
- W4366549780 hasRelatedWork W4327775918 @default.
- W4366549780 hasVolume "39" @default.
- W4366549780 isParatext "false" @default.
- W4366549780 isRetracted "false" @default.
- W4366549780 workType "article" @default.