Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366550892> ?p ?o ?g. }
- W4366550892 endingPage "22" @default.
- W4366550892 startingPage "1" @default.
- W4366550892 abstract "Automation of financial data collection, generation, accumulation, and interpretation for decision making may reduce volatility in the stock market and increase liquidity occasionally. Thus, future markets' prediction factoring in the sentiment of investors and algorithmic traders is an exciting area for research with deep learning techniques emerging to understand the market and its future direction. The paper develops two FINBERT deep neural network models pre-trained on the financial phrase dataset, the first one to extract sentiment from the NSE market news. The second model is adopted to predict the stock market movement of NSE with the above sentiment, historical stock prices, return on investment, and risk as predictors. The accuracy is compared with RNN and LSTM and baseline machine learning classifiers like naïve bayes and support vector machine (SVM). The accuracy of the FINBERT model is found to out-perform the deep learning algorithms and above baseline machine learning classifiers thus justifying the importance of the FINBERT model in stock market prediction." @default.
- W4366550892 created "2023-04-22" @default.
- W4366550892 creator A5010952755 @default.
- W4366550892 creator A5064693863 @default.
- W4366550892 date "2023-04-20" @default.
- W4366550892 modified "2023-09-25" @default.
- W4366550892 title "Prediction of the Stock Market From Linguistic Phrases" @default.
- W4366550892 cites W1488781072 @default.
- W4366550892 cites W1546425147 @default.
- W4366550892 cites W1599423069 @default.
- W4366550892 cites W1923555227 @default.
- W4366550892 cites W1963994673 @default.
- W4366550892 cites W1965235124 @default.
- W4366550892 cites W1984430235 @default.
- W4366550892 cites W2001640531 @default.
- W4366550892 cites W2003615981 @default.
- W4366550892 cites W2015174807 @default.
- W4366550892 cites W2048658075 @default.
- W4366550892 cites W2050643653 @default.
- W4366550892 cites W2064031858 @default.
- W4366550892 cites W2094665138 @default.
- W4366550892 cites W2097752063 @default.
- W4366550892 cites W2106895738 @default.
- W4366550892 cites W2108014725 @default.
- W4366550892 cites W2112262445 @default.
- W4366550892 cites W2128792405 @default.
- W4366550892 cites W2129387003 @default.
- W4366550892 cites W2131675768 @default.
- W4366550892 cites W2162256707 @default.
- W4366550892 cites W2271008577 @default.
- W4366550892 cites W2294316503 @default.
- W4366550892 cites W2309196980 @default.
- W4366550892 cites W2313281002 @default.
- W4366550892 cites W2330609380 @default.
- W4366550892 cites W2416376918 @default.
- W4366550892 cites W2625464253 @default.
- W4366550892 cites W2661345990 @default.
- W4366550892 cites W2762466482 @default.
- W4366550892 cites W2785939461 @default.
- W4366550892 cites W2901952907 @default.
- W4366550892 cites W2921079363 @default.
- W4366550892 cites W2922184047 @default.
- W4366550892 cites W2937185793 @default.
- W4366550892 cites W2947134462 @default.
- W4366550892 cites W2947277349 @default.
- W4366550892 cites W2976807927 @default.
- W4366550892 cites W2979778574 @default.
- W4366550892 cites W3005079263 @default.
- W4366550892 cites W3013629901 @default.
- W4366550892 cites W3020658334 @default.
- W4366550892 cites W3043286448 @default.
- W4366550892 cites W3094648865 @default.
- W4366550892 cites W3101592544 @default.
- W4366550892 cites W3121315550 @default.
- W4366550892 cites W3122260219 @default.
- W4366550892 cites W3122563224 @default.
- W4366550892 cites W3122714195 @default.
- W4366550892 cites W3122727604 @default.
- W4366550892 cites W3122779686 @default.
- W4366550892 cites W3122944446 @default.
- W4366550892 cites W3123017196 @default.
- W4366550892 cites W3123095408 @default.
- W4366550892 cites W3123386791 @default.
- W4366550892 cites W3123756285 @default.
- W4366550892 cites W3123779227 @default.
- W4366550892 cites W3124347080 @default.
- W4366550892 cites W3124760570 @default.
- W4366550892 cites W3124766520 @default.
- W4366550892 cites W3124787177 @default.
- W4366550892 cites W3125251380 @default.
- W4366550892 cites W3125284286 @default.
- W4366550892 cites W3125952890 @default.
- W4366550892 cites W3126029451 @default.
- W4366550892 cites W3126053622 @default.
- W4366550892 cites W3127471220 @default.
- W4366550892 cites W3129946421 @default.
- W4366550892 cites W4230412795 @default.
- W4366550892 cites W4232067337 @default.
- W4366550892 cites W4240205250 @default.
- W4366550892 cites W4245203509 @default.
- W4366550892 cites W4320801214 @default.
- W4366550892 cites W8463221 @default.
- W4366550892 doi "https://doi.org/10.4018/jdm.322020" @default.
- W4366550892 hasPublicationYear "2023" @default.
- W4366550892 type Work @default.
- W4366550892 citedByCount "0" @default.
- W4366550892 crossrefType "journal-article" @default.
- W4366550892 hasAuthorship W4366550892A5010952755 @default.
- W4366550892 hasAuthorship W4366550892A5064693863 @default.
- W4366550892 hasBestOaLocation W43665508921 @default.
- W4366550892 hasConcept C10138342 @default.
- W4366550892 hasConcept C108583219 @default.
- W4366550892 hasConcept C119857082 @default.
- W4366550892 hasConcept C12267149 @default.
- W4366550892 hasConcept C149782125 @default.
- W4366550892 hasConcept C151730666 @default.
- W4366550892 hasConcept C154945302 @default.
- W4366550892 hasConcept C162324750 @default.