Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366551336> ?p ?o ?g. }
- W4366551336 abstract "Abstract Background Neoadjuvant chemotherapy (NAC) is the standard treatment for early-stage triple negative breast cancer (TNBC). The primary endpoint of NAC is a pathological complete response (pCR). NAC results in pCR in only 30%–40% of TNBC patients. Tumor-infiltrating lymphocytes (TILs), Ki67 and phosphohistone H3 (pH3) are a few known biomarkers to predict NAC response. Currently, systematic evaluation of the combined value of these biomarkers in predicting NAC response is lacking. In this study, the predictive value of markers derived from H&E and IHC stained biopsy tissue was comprehensively evaluated using a supervised machine learning (ML)-based approach. Identifying predictive biomarkers could help guide therapeutic decisions by enabling precise stratification of TNBC patients into responders and partial or non-responders. Methods Serial sections from core needle biopsies (n=76) were stained with H&E, and immunohistochemically for the Ki67 and pH3 markers, followed by whole slide image (WSI) generation. The resulting WSI triplets were co-registered with H&E WSIs serving as the reference. Separate mask region-based CNN (MRCNN) models were trained with annotated H&E, Ki67 and pH3 images for detecting tumor cells, stromal and intratumoral TILs (sTILs and tTILs), Ki67 + , and pH3 + cells. Top image patches with a high density of cells of interest were identified as hotspots. Best classifiers for NAC response prediction were identified by training multiple ML models, and evaluating their performance by accuracy, area under curve, and confusion matrix analyses. Results Highest prediction accuracy was achieved when hotspot regions were identified by tTIL counts and each hotspot was represented by measures of tTILs, sTILs, tumor cells, Ki67 + , and pH3 + features. Regardless of the hotspot selection metric, a complementary use of multiple histological features (tTILs, sTILs) and molecular biomarkers (Ki67 and pH3) resulted in top ranked performance at the patient level. Conclusions Overall, our results emphasize that prediction models for NAC response should be based on biomarkers in combination rather than in isolation. Our study provides compelling evidence to support the use of ML-based models to predict NAC response in patients with TNBC." @default.
- W4366551336 created "2023-04-22" @default.
- W4366551336 creator A5010951768 @default.
- W4366551336 creator A5019846100 @default.
- W4366551336 creator A5025905653 @default.
- W4366551336 creator A5026106543 @default.
- W4366551336 creator A5027436323 @default.
- W4366551336 creator A5050041510 @default.
- W4366551336 creator A5062289259 @default.
- W4366551336 creator A5066949209 @default.
- W4366551336 creator A5067025453 @default.
- W4366551336 creator A5090147550 @default.
- W4366551336 date "2023-04-20" @default.
- W4366551336 modified "2023-09-29" @default.
- W4366551336 title "Predicting neoadjuvant treatment response in triple-negative breast cancer using machine learning" @default.
- W4366551336 cites W1977295091 @default.
- W4366551336 cites W1990573783 @default.
- W4366551336 cites W2037718815 @default.
- W4366551336 cites W2048492216 @default.
- W4366551336 cites W2082172177 @default.
- W4366551336 cites W2086524378 @default.
- W4366551336 cites W2120431466 @default.
- W4366551336 cites W2126486896 @default.
- W4366551336 cites W2131754688 @default.
- W4366551336 cites W2132893003 @default.
- W4366551336 cites W2150134401 @default.
- W4366551336 cites W2150351703 @default.
- W4366551336 cites W2154536753 @default.
- W4366551336 cites W2161136893 @default.
- W4366551336 cites W2168197820 @default.
- W4366551336 cites W2420462095 @default.
- W4366551336 cites W2561856923 @default.
- W4366551336 cites W2572716935 @default.
- W4366551336 cites W2738153741 @default.
- W4366551336 cites W2789428140 @default.
- W4366551336 cites W2806070179 @default.
- W4366551336 cites W2886485146 @default.
- W4366551336 cites W2886991068 @default.
- W4366551336 cites W2892287597 @default.
- W4366551336 cites W2937307539 @default.
- W4366551336 cites W2945790622 @default.
- W4366551336 cites W2999521665 @default.
- W4366551336 cites W3006134372 @default.
- W4366551336 cites W3006138035 @default.
- W4366551336 cites W3006930853 @default.
- W4366551336 cites W3018084241 @default.
- W4366551336 cites W3031939267 @default.
- W4366551336 cites W3087393791 @default.
- W4366551336 cites W3093593152 @default.
- W4366551336 cites W3176612188 @default.
- W4366551336 cites W3200545581 @default.
- W4366551336 cites W3204013916 @default.
- W4366551336 cites W4280617720 @default.
- W4366551336 cites W4281626918 @default.
- W4366551336 cites W4313889797 @default.
- W4366551336 doi "https://doi.org/10.1101/2023.04.17.536459" @default.
- W4366551336 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37131688" @default.
- W4366551336 hasPublicationYear "2023" @default.
- W4366551336 type Work @default.
- W4366551336 citedByCount "0" @default.
- W4366551336 crossrefType "posted-content" @default.
- W4366551336 hasAuthorship W4366551336A5010951768 @default.
- W4366551336 hasAuthorship W4366551336A5019846100 @default.
- W4366551336 hasAuthorship W4366551336A5025905653 @default.
- W4366551336 hasAuthorship W4366551336A5026106543 @default.
- W4366551336 hasAuthorship W4366551336A5027436323 @default.
- W4366551336 hasAuthorship W4366551336A5050041510 @default.
- W4366551336 hasAuthorship W4366551336A5062289259 @default.
- W4366551336 hasAuthorship W4366551336A5066949209 @default.
- W4366551336 hasAuthorship W4366551336A5067025453 @default.
- W4366551336 hasAuthorship W4366551336A5090147550 @default.
- W4366551336 hasBestOaLocation W43665513361 @default.
- W4366551336 hasConcept C121608353 @default.
- W4366551336 hasConcept C126322002 @default.
- W4366551336 hasConcept C142724271 @default.
- W4366551336 hasConcept C143998085 @default.
- W4366551336 hasConcept C2775934546 @default.
- W4366551336 hasConcept C2777522853 @default.
- W4366551336 hasConcept C2777701055 @default.
- W4366551336 hasConcept C2778326572 @default.
- W4366551336 hasConcept C2780110267 @default.
- W4366551336 hasConcept C530470458 @default.
- W4366551336 hasConcept C71924100 @default.
- W4366551336 hasConceptScore W4366551336C121608353 @default.
- W4366551336 hasConceptScore W4366551336C126322002 @default.
- W4366551336 hasConceptScore W4366551336C142724271 @default.
- W4366551336 hasConceptScore W4366551336C143998085 @default.
- W4366551336 hasConceptScore W4366551336C2775934546 @default.
- W4366551336 hasConceptScore W4366551336C2777522853 @default.
- W4366551336 hasConceptScore W4366551336C2777701055 @default.
- W4366551336 hasConceptScore W4366551336C2778326572 @default.
- W4366551336 hasConceptScore W4366551336C2780110267 @default.
- W4366551336 hasConceptScore W4366551336C530470458 @default.
- W4366551336 hasConceptScore W4366551336C71924100 @default.
- W4366551336 hasLocation W43665513361 @default.
- W4366551336 hasLocation W43665513362 @default.
- W4366551336 hasOpenAccess W4366551336 @default.
- W4366551336 hasPrimaryLocation W43665513361 @default.
- W4366551336 hasRelatedWork W1999292713 @default.
- W4366551336 hasRelatedWork W2139975046 @default.