Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366558210> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4366558210 abstract "Spiking neural networks (SNNs) have superb characteristics in sensory information recognition tasks due to their biological plausibility. However, the performance of some current spiking-based models is limited by their structures which means either fully connected or too-deep structures bring too much redundancy. This redundancy from both connection and neurons is one of the key factors hindering the practical application of SNNs. Although Some pruning methods were proposed to tackle this problem, they normally ignored the fact the neural topology in the human brain could be adjusted dynamically. Inspired by this, this paper proposed an evolutionary-based structure construction method for constructing more reasonable SNNs. By integrating the knowledge distillation and connection pruning method, the synaptic connections in SNNs can be optimized dynamically to reach an optimal state. As a result, the structure of SNNs could not only absorb knowledge from the teacher model but also search for deep but sparse network topology. Experimental results on CIFAR100 and DVS-Gesture show that the proposed structure learning method can get pretty well performance while reducing the connection redundancy. The proposed method explores a novel dynamical way for structure learning from scratch in SNNs which could build a bridge to close the gap between deep learning and bio-inspired neural dynamics." @default.
- W4366558210 created "2023-04-22" @default.
- W4366558210 creator A5001710920 @default.
- W4366558210 creator A5007758616 @default.
- W4366558210 creator A5012353424 @default.
- W4366558210 creator A5037742951 @default.
- W4366558210 creator A5057282687 @default.
- W4366558210 creator A5084291326 @default.
- W4366558210 creator A5091758507 @default.
- W4366558210 date "2023-04-19" @default.
- W4366558210 modified "2023-10-16" @default.
- W4366558210 title "Biologically inspired structure learning with reverse knowledge distillation for spiking neural networks" @default.
- W4366558210 doi "https://doi.org/10.48550/arxiv.2304.09500" @default.
- W4366558210 hasPublicationYear "2023" @default.
- W4366558210 type Work @default.
- W4366558210 citedByCount "2" @default.
- W4366558210 countsByYear W43665582102023 @default.
- W4366558210 crossrefType "posted-content" @default.
- W4366558210 hasAuthorship W4366558210A5001710920 @default.
- W4366558210 hasAuthorship W4366558210A5007758616 @default.
- W4366558210 hasAuthorship W4366558210A5012353424 @default.
- W4366558210 hasAuthorship W4366558210A5037742951 @default.
- W4366558210 hasAuthorship W4366558210A5057282687 @default.
- W4366558210 hasAuthorship W4366558210A5084291326 @default.
- W4366558210 hasAuthorship W4366558210A5091758507 @default.
- W4366558210 hasBestOaLocation W43665582101 @default.
- W4366558210 hasConcept C108010975 @default.
- W4366558210 hasConcept C108583219 @default.
- W4366558210 hasConcept C111919701 @default.
- W4366558210 hasConcept C11731999 @default.
- W4366558210 hasConcept C119857082 @default.
- W4366558210 hasConcept C13355873 @default.
- W4366558210 hasConcept C152124472 @default.
- W4366558210 hasConcept C154945302 @default.
- W4366558210 hasConcept C2524010 @default.
- W4366558210 hasConcept C2984842247 @default.
- W4366558210 hasConcept C33923547 @default.
- W4366558210 hasConcept C41008148 @default.
- W4366558210 hasConcept C50644808 @default.
- W4366558210 hasConcept C6557445 @default.
- W4366558210 hasConcept C86803240 @default.
- W4366558210 hasConceptScore W4366558210C108010975 @default.
- W4366558210 hasConceptScore W4366558210C108583219 @default.
- W4366558210 hasConceptScore W4366558210C111919701 @default.
- W4366558210 hasConceptScore W4366558210C11731999 @default.
- W4366558210 hasConceptScore W4366558210C119857082 @default.
- W4366558210 hasConceptScore W4366558210C13355873 @default.
- W4366558210 hasConceptScore W4366558210C152124472 @default.
- W4366558210 hasConceptScore W4366558210C154945302 @default.
- W4366558210 hasConceptScore W4366558210C2524010 @default.
- W4366558210 hasConceptScore W4366558210C2984842247 @default.
- W4366558210 hasConceptScore W4366558210C33923547 @default.
- W4366558210 hasConceptScore W4366558210C41008148 @default.
- W4366558210 hasConceptScore W4366558210C50644808 @default.
- W4366558210 hasConceptScore W4366558210C6557445 @default.
- W4366558210 hasConceptScore W4366558210C86803240 @default.
- W4366558210 hasLocation W43665582101 @default.
- W4366558210 hasOpenAccess W4366558210 @default.
- W4366558210 hasPrimaryLocation W43665582101 @default.
- W4366558210 hasRelatedWork W2576264401 @default.
- W4366558210 hasRelatedWork W2909645158 @default.
- W4366558210 hasRelatedWork W2950066684 @default.
- W4366558210 hasRelatedWork W3082895349 @default.
- W4366558210 hasRelatedWork W3162132941 @default.
- W4366558210 hasRelatedWork W3179488938 @default.
- W4366558210 hasRelatedWork W4288853838 @default.
- W4366558210 hasRelatedWork W4298388782 @default.
- W4366558210 hasRelatedWork W4308112567 @default.
- W4366558210 hasRelatedWork W4312831135 @default.
- W4366558210 isParatext "false" @default.
- W4366558210 isRetracted "false" @default.
- W4366558210 workType "article" @default.