Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366564440> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4366564440 abstract "Many industrial and real life problems exhibit highly nonlinear periodic behaviors and the conventional methods may fall short of finding their analytical or closed form solutions. Such problems demand some cutting edge computational tools with increased functionality and reduced cost. Recently, deep neural networks have gained massive research interest due to their ability to handle large data and universality to learn complex functions. In this work, we put forward a methodology based on deep neural networks with responsive layers structure to deal nonlinear oscillations in microelectromechanical systems. We incorporated some oscillatory and non oscillatory activation functions such as growing cosine unit known as GCU, Sine, Mish and Tanh in our designed network to have a comprehensive analysis on their performance for highly nonlinear and vibrational problems. Integrating oscillatory activation functions with deep neural networks definitely outperform in predicting the periodic patterns of underlying systems. To support oscillatory actuation for nonlinear systems, we have proposed a novel oscillatory activation function called Amplifying Sine Unit denoted as ASU which is more efficient than GCU for complex vibratory systems such as microelectromechanical systems. Experimental results show that the designed network with our proposed activation function ASU is more reliable and robust to handle the challenges posed by nonlinearity and oscillations. To validate the proposed methodology, outputs of our networks are being compared with the results from Livermore solver for ordinary differential equation called LSODA. Further, graphical illustrations of incurred errors are also being presented in the work." @default.
- W4366564440 created "2023-04-22" @default.
- W4366564440 creator A5057134685 @default.
- W4366564440 creator A5070501516 @default.
- W4366564440 creator A5091612557 @default.
- W4366564440 date "2023-04-18" @default.
- W4366564440 modified "2023-09-25" @default.
- W4366564440 title "Amplifying Sine Unit: An Oscillatory Activation Function for Deep Neural Networks to Recover Nonlinear Oscillations Efficiently" @default.
- W4366564440 doi "https://doi.org/10.48550/arxiv.2304.09759" @default.
- W4366564440 hasPublicationYear "2023" @default.
- W4366564440 type Work @default.
- W4366564440 citedByCount "0" @default.
- W4366564440 crossrefType "posted-content" @default.
- W4366564440 hasAuthorship W4366564440A5057134685 @default.
- W4366564440 hasAuthorship W4366564440A5070501516 @default.
- W4366564440 hasAuthorship W4366564440A5091612557 @default.
- W4366564440 hasBestOaLocation W43665644401 @default.
- W4366564440 hasConcept C121332964 @default.
- W4366564440 hasConcept C134306372 @default.
- W4366564440 hasConcept C147317941 @default.
- W4366564440 hasConcept C154945302 @default.
- W4366564440 hasConcept C158622935 @default.
- W4366564440 hasConcept C178009071 @default.
- W4366564440 hasConcept C183992945 @default.
- W4366564440 hasConcept C186661526 @default.
- W4366564440 hasConcept C199360897 @default.
- W4366564440 hasConcept C2524010 @default.
- W4366564440 hasConcept C2775924081 @default.
- W4366564440 hasConcept C2778770139 @default.
- W4366564440 hasConcept C2779437913 @default.
- W4366564440 hasConcept C33923547 @default.
- W4366564440 hasConcept C38365724 @default.
- W4366564440 hasConcept C41008148 @default.
- W4366564440 hasConcept C47446073 @default.
- W4366564440 hasConcept C50644808 @default.
- W4366564440 hasConcept C62520636 @default.
- W4366564440 hasConcept C92047909 @default.
- W4366564440 hasConceptScore W4366564440C121332964 @default.
- W4366564440 hasConceptScore W4366564440C134306372 @default.
- W4366564440 hasConceptScore W4366564440C147317941 @default.
- W4366564440 hasConceptScore W4366564440C154945302 @default.
- W4366564440 hasConceptScore W4366564440C158622935 @default.
- W4366564440 hasConceptScore W4366564440C178009071 @default.
- W4366564440 hasConceptScore W4366564440C183992945 @default.
- W4366564440 hasConceptScore W4366564440C186661526 @default.
- W4366564440 hasConceptScore W4366564440C199360897 @default.
- W4366564440 hasConceptScore W4366564440C2524010 @default.
- W4366564440 hasConceptScore W4366564440C2775924081 @default.
- W4366564440 hasConceptScore W4366564440C2778770139 @default.
- W4366564440 hasConceptScore W4366564440C2779437913 @default.
- W4366564440 hasConceptScore W4366564440C33923547 @default.
- W4366564440 hasConceptScore W4366564440C38365724 @default.
- W4366564440 hasConceptScore W4366564440C41008148 @default.
- W4366564440 hasConceptScore W4366564440C47446073 @default.
- W4366564440 hasConceptScore W4366564440C50644808 @default.
- W4366564440 hasConceptScore W4366564440C62520636 @default.
- W4366564440 hasConceptScore W4366564440C92047909 @default.
- W4366564440 hasLocation W43665644401 @default.
- W4366564440 hasOpenAccess W4366564440 @default.
- W4366564440 hasPrimaryLocation W43665644401 @default.
- W4366564440 hasRelatedWork W1775321609 @default.
- W4366564440 hasRelatedWork W1979632908 @default.
- W4366564440 hasRelatedWork W1985936210 @default.
- W4366564440 hasRelatedWork W2068868705 @default.
- W4366564440 hasRelatedWork W2983300459 @default.
- W4366564440 hasRelatedWork W3005623875 @default.
- W4366564440 hasRelatedWork W3121663783 @default.
- W4366564440 hasRelatedWork W3175461337 @default.
- W4366564440 hasRelatedWork W4238306259 @default.
- W4366564440 hasRelatedWork W95230609 @default.
- W4366564440 isParatext "false" @default.
- W4366564440 isRetracted "false" @default.
- W4366564440 workType "article" @default.