Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366588263> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4366588263 endingPage "1928" @default.
- W4366588263 startingPage "1928" @default.
- W4366588263 abstract "A limited feasible region restricts individuals from evolving optionally and makes it more difficult to solve constrained optimization problems. In order to overcome difficulties such as introducing initial feasible solutions, a novel algorithm called the successive approximation genetic algorithm (SAGA) is proposed; (a) the simple genetic algorithm (SGA) is the main frame; (b) a self-adaptive penalty function is considered and the penalty factor is adjusted automatically by the proportion of feasible and infeasible solutions; (c) a generation-by-generation approach and a three-stages evolution are introduced; and (d) dynamically enlarging and reducing the tolerance error of the constraint violation makes it much easier to generate initial feasible solutions. Then, ten benchmarks and an engineering problem were adopted to evaluate the SAGA in detail. It was compared with the improved dual-population genetic algorithm (IDPGA) and eight other algorithms, and the results show that SAGA finds the optimum in 5 s for an equality constraint and 1 s for an inequality constraint. The largest constraint violation can be accurate to at least three decimal fractions for most problems. SAGA obtains a better value, of 1.3398, than the eight other algorithms for the engineering problem. In conclusion, SAGA is very suitable for solving nonlinear optimization problems with a single constraint, accompanied by more accurate solutions, but it takes a longer time. In reality, SAGA searched for a better solution along the bound after several iterations and converged to an acceptable solution in early evolution. It is critical to improve the running speed of SAGA in the future." @default.
- W4366588263 created "2023-04-23" @default.
- W4366588263 creator A5011489796 @default.
- W4366588263 creator A5046951881 @default.
- W4366588263 creator A5053911309 @default.
- W4366588263 date "2023-04-19" @default.
- W4366588263 modified "2023-10-01" @default.
- W4366588263 title "The Successive Approximation Genetic Algorithm (SAGA) for Optimization Problems with Single Constraint" @default.
- W4366588263 cites W1510805918 @default.
- W4366588263 cites W1524742142 @default.
- W4366588263 cites W1972494777 @default.
- W4366588263 cites W1974300040 @default.
- W4366588263 cites W1976504785 @default.
- W4366588263 cites W1976744965 @default.
- W4366588263 cites W1978588057 @default.
- W4366588263 cites W1983969659 @default.
- W4366588263 cites W1984390431 @default.
- W4366588263 cites W1990832614 @default.
- W4366588263 cites W2023370127 @default.
- W4366588263 cites W2024060531 @default.
- W4366588263 cites W2033033564 @default.
- W4366588263 cites W2038040867 @default.
- W4366588263 cites W2038087312 @default.
- W4366588263 cites W2042594698 @default.
- W4366588263 cites W2067560688 @default.
- W4366588263 cites W2072985506 @default.
- W4366588263 cites W2093505886 @default.
- W4366588263 cites W2105797904 @default.
- W4366588263 cites W2128084896 @default.
- W4366588263 cites W2145479420 @default.
- W4366588263 cites W2605842252 @default.
- W4366588263 cites W2759208921 @default.
- W4366588263 cites W3211434935 @default.
- W4366588263 cites W4281628183 @default.
- W4366588263 doi "https://doi.org/10.3390/math11081928" @default.
- W4366588263 hasPublicationYear "2023" @default.
- W4366588263 type Work @default.
- W4366588263 citedByCount "0" @default.
- W4366588263 crossrefType "journal-article" @default.
- W4366588263 hasAuthorship W4366588263A5011489796 @default.
- W4366588263 hasAuthorship W4366588263A5046951881 @default.
- W4366588263 hasAuthorship W4366588263A5053911309 @default.
- W4366588263 hasBestOaLocation W43665882631 @default.
- W4366588263 hasConcept C11413529 @default.
- W4366588263 hasConcept C126255220 @default.
- W4366588263 hasConcept C137836250 @default.
- W4366588263 hasConcept C14036430 @default.
- W4366588263 hasConcept C2524010 @default.
- W4366588263 hasConcept C2776036281 @default.
- W4366588263 hasConcept C33923547 @default.
- W4366588263 hasConcept C41008148 @default.
- W4366588263 hasConcept C55660270 @default.
- W4366588263 hasConcept C6180225 @default.
- W4366588263 hasConcept C78458016 @default.
- W4366588263 hasConcept C86803240 @default.
- W4366588263 hasConcept C8880873 @default.
- W4366588263 hasConceptScore W4366588263C11413529 @default.
- W4366588263 hasConceptScore W4366588263C126255220 @default.
- W4366588263 hasConceptScore W4366588263C137836250 @default.
- W4366588263 hasConceptScore W4366588263C14036430 @default.
- W4366588263 hasConceptScore W4366588263C2524010 @default.
- W4366588263 hasConceptScore W4366588263C2776036281 @default.
- W4366588263 hasConceptScore W4366588263C33923547 @default.
- W4366588263 hasConceptScore W4366588263C41008148 @default.
- W4366588263 hasConceptScore W4366588263C55660270 @default.
- W4366588263 hasConceptScore W4366588263C6180225 @default.
- W4366588263 hasConceptScore W4366588263C78458016 @default.
- W4366588263 hasConceptScore W4366588263C86803240 @default.
- W4366588263 hasConceptScore W4366588263C8880873 @default.
- W4366588263 hasIssue "8" @default.
- W4366588263 hasLocation W43665882631 @default.
- W4366588263 hasOpenAccess W4366588263 @default.
- W4366588263 hasPrimaryLocation W43665882631 @default.
- W4366588263 hasRelatedWork W2048756781 @default.
- W4366588263 hasRelatedWork W2100903564 @default.
- W4366588263 hasRelatedWork W2381737086 @default.
- W4366588263 hasRelatedWork W2474851184 @default.
- W4366588263 hasRelatedWork W2956833732 @default.
- W4366588263 hasRelatedWork W3000379490 @default.
- W4366588263 hasRelatedWork W3123416417 @default.
- W4366588263 hasRelatedWork W3171887366 @default.
- W4366588263 hasRelatedWork W4312509357 @default.
- W4366588263 hasRelatedWork W2912146214 @default.
- W4366588263 hasVolume "11" @default.
- W4366588263 isParatext "false" @default.
- W4366588263 isRetracted "false" @default.
- W4366588263 workType "article" @default.