Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366589788> ?p ?o ?g. }
- W4366589788 abstract "Advances in optical imaging technology using rapid and non-destructive methods have led to improvements in the efficiency of seed quality detection. Accurately timing the harvest is crucial for maximizing the yield of higher-quality Siberian wild rye seeds by minimizing excessive shattering during harvesting. This research applied integrated optical imaging techniques and machine learning algorithms to develop different models for classifying Siberian wild rye seeds based on different maturity stages and grain positions. The multi-source fusion of morphological, multispectral, and autofluorescence data provided more comprehensive information but also increases the performance requirements of the equipment. Therefore, we employed three filtering algorithms, namely minimal joint mutual information maximization (JMIM), information gain, and Gini impurity, and set up two control methods (feature union and no-filtering) to assess the impact of retaining only 20% of the features on the model performance. Both JMIM and information gain revealed autofluorescence and morphological features (CIELab A, CIELab B, hue and saturation), with these two filtering algorithms showing shorter run times. Furthermore, a strong correlation was observed between shoot length and morphological and autofluorescence spectral features. Machine learning models based on linear discriminant analysis (LDA), random forests (RF) and support vector machines (SVM) showed high performance (>0.78 accuracies) in classifying seeds at different maturity stages. Furthermore, it was found that there was considerable variation in the different grain positions at the maturity stage, and the K-means approach was used to improve the model performance by 5.8%-9.24%. In conclusion, our study demonstrated that feature filtering algorithms combined with machine learning algorithms offer high performance and low cost in identifying seed maturity stages and that the application of k-means techniques for inconsistent maturity improves classification accuracy. Therefore, this technique could be employed classification of seed maturity and superior physiological quality for Siberian wild rye seeds." @default.
- W4366589788 created "2023-04-23" @default.
- W4366589788 creator A5015614663 @default.
- W4366589788 creator A5018892762 @default.
- W4366589788 creator A5039317114 @default.
- W4366589788 creator A5066292657 @default.
- W4366589788 creator A5070471829 @default.
- W4366589788 creator A5073652467 @default.
- W4366589788 creator A5075278487 @default.
- W4366589788 creator A5078102504 @default.
- W4366589788 creator A5080113198 @default.
- W4366589788 creator A5082567253 @default.
- W4366589788 date "2023-04-20" @default.
- W4366589788 modified "2023-09-27" @default.
- W4366589788 title "Integrating optical imaging techniques for a novel approach to evaluate Siberian wild rye seed maturity" @default.
- W4366589788 cites W1563088657 @default.
- W4366589788 cites W1986360479 @default.
- W4366589788 cites W1989934686 @default.
- W4366589788 cites W2044953629 @default.
- W4366589788 cites W2063057245 @default.
- W4366589788 cites W2073241381 @default.
- W4366589788 cites W2100779064 @default.
- W4366589788 cites W2106523528 @default.
- W4366589788 cites W2132587373 @default.
- W4366589788 cites W2153947402 @default.
- W4366589788 cites W2258486544 @default.
- W4366589788 cites W2317510694 @default.
- W4366589788 cites W2319700464 @default.
- W4366589788 cites W2345974792 @default.
- W4366589788 cites W2562829635 @default.
- W4366589788 cites W2605872439 @default.
- W4366589788 cites W2735229032 @default.
- W4366589788 cites W2769862262 @default.
- W4366589788 cites W2791478072 @default.
- W4366589788 cites W2810191605 @default.
- W4366589788 cites W2917883159 @default.
- W4366589788 cites W2922529600 @default.
- W4366589788 cites W2939819866 @default.
- W4366589788 cites W2946470486 @default.
- W4366589788 cites W2965405319 @default.
- W4366589788 cites W2973941913 @default.
- W4366589788 cites W2978720004 @default.
- W4366589788 cites W3000337105 @default.
- W4366589788 cites W3003657912 @default.
- W4366589788 cites W3027826588 @default.
- W4366589788 cites W3034671962 @default.
- W4366589788 cites W3041488889 @default.
- W4366589788 cites W3080396356 @default.
- W4366589788 cites W3102809246 @default.
- W4366589788 cites W3115582411 @default.
- W4366589788 cites W3118881464 @default.
- W4366589788 cites W3196415610 @default.
- W4366589788 cites W3198085176 @default.
- W4366589788 cites W4223516180 @default.
- W4366589788 cites W4224092403 @default.
- W4366589788 cites W4282842207 @default.
- W4366589788 cites W4282918498 @default.
- W4366589788 cites W4303981265 @default.
- W4366589788 cites W4319441612 @default.
- W4366589788 doi "https://doi.org/10.3389/fpls.2023.1170947" @default.
- W4366589788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37152128" @default.
- W4366589788 hasPublicationYear "2023" @default.
- W4366589788 type Work @default.
- W4366589788 citedByCount "1" @default.
- W4366589788 countsByYear W43665897882023 @default.
- W4366589788 crossrefType "journal-article" @default.
- W4366589788 hasAuthorship W4366589788A5015614663 @default.
- W4366589788 hasAuthorship W4366589788A5018892762 @default.
- W4366589788 hasAuthorship W4366589788A5039317114 @default.
- W4366589788 hasAuthorship W4366589788A5066292657 @default.
- W4366589788 hasAuthorship W4366589788A5070471829 @default.
- W4366589788 hasAuthorship W4366589788A5073652467 @default.
- W4366589788 hasAuthorship W4366589788A5075278487 @default.
- W4366589788 hasAuthorship W4366589788A5078102504 @default.
- W4366589788 hasAuthorship W4366589788A5080113198 @default.
- W4366589788 hasAuthorship W4366589788A5082567253 @default.
- W4366589788 hasBestOaLocation W43665897881 @default.
- W4366589788 hasConcept C119857082 @default.
- W4366589788 hasConcept C120665830 @default.
- W4366589788 hasConcept C121332964 @default.
- W4366589788 hasConcept C12267149 @default.
- W4366589788 hasConcept C138885662 @default.
- W4366589788 hasConcept C153180895 @default.
- W4366589788 hasConcept C154945302 @default.
- W4366589788 hasConcept C169258074 @default.
- W4366589788 hasConcept C173163844 @default.
- W4366589788 hasConcept C179687394 @default.
- W4366589788 hasConcept C2776401178 @default.
- W4366589788 hasConcept C33923547 @default.
- W4366589788 hasConcept C41008148 @default.
- W4366589788 hasConcept C41895202 @default.
- W4366589788 hasConcept C69738355 @default.
- W4366589788 hasConcept C91881484 @default.
- W4366589788 hasConceptScore W4366589788C119857082 @default.
- W4366589788 hasConceptScore W4366589788C120665830 @default.
- W4366589788 hasConceptScore W4366589788C121332964 @default.
- W4366589788 hasConceptScore W4366589788C12267149 @default.
- W4366589788 hasConceptScore W4366589788C138885662 @default.
- W4366589788 hasConceptScore W4366589788C153180895 @default.
- W4366589788 hasConceptScore W4366589788C154945302 @default.