Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366593746> ?p ?o ?g. }
- W4366593746 endingPage "1071" @default.
- W4366593746 startingPage "1071" @default.
- W4366593746 abstract "Identifying fungal clones propagated during outbreaks in hospital settings is a problem that increasingly confronts biologists. Current tools based on DNA sequencing or microsatellite analysis require specific manipulations that are difficult to implement in the context of routine diagnosis. Using deep learning to classify the mass spectra obtained during the routine identification of fungi by MALDI-TOF mass spectrometry could be of interest to differentiate isolates belonging to epidemic clones from others. As part of the management of a nosocomial outbreak due to Candida parapsilosis in two Parisian hospitals, we studied the impact of the preparation of the spectra on the performance of a deep neural network. Our purpose was to differentiate 39 otherwise fluconazole-resistant isolates belonging to a clonal subset from 56 other isolates, most of which were fluconazole-susceptible, collected during the same period and not belonging to the clonal subset. Our study carried out on spectra obtained on four different machines from isolates cultured for 24 or 48 h on three different culture media showed that each of these parameters had a significant impact on the performance of the classifier. In particular, using different culture times between learning and testing steps could lead to a collapse in the accuracy of the predictions. On the other hand, including spectra obtained after 24 and 48 h of growth during the learning step restored the good results. Finally, we showed that the deleterious effect of the device variability used for learning and testing could be largely improved by including a spectra alignment step during preprocessing before submitting them to the neural network. Taken together, these experiments show the great potential of deep learning models to identify spectra of specific clones, providing that crucial parameters are controlled during both culture and preparation steps before submitting spectra to a classifier." @default.
- W4366593746 created "2023-04-23" @default.
- W4366593746 creator A5008914363 @default.
- W4366593746 creator A5014418453 @default.
- W4366593746 creator A5029879807 @default.
- W4366593746 creator A5037417065 @default.
- W4366593746 creator A5038272201 @default.
- W4366593746 creator A5040983615 @default.
- W4366593746 creator A5056834851 @default.
- W4366593746 creator A5057703185 @default.
- W4366593746 creator A5067382683 @default.
- W4366593746 creator A5068130713 @default.
- W4366593746 creator A5088901361 @default.
- W4366593746 date "2023-04-20" @default.
- W4366593746 modified "2023-10-09" @default.
- W4366593746 title "Improving the Detection of Epidemic Clones in Candida parapsilosis Outbreaks by Combining MALDI-TOF Mass Spectrometry and Deep Learning Approaches" @default.
- W4366593746 cites W1830515907 @default.
- W4366593746 cites W1979092094 @default.
- W4366593746 cites W1991882850 @default.
- W4366593746 cites W2001766653 @default.
- W4366593746 cites W2065793896 @default.
- W4366593746 cites W2115445096 @default.
- W4366593746 cites W2120834638 @default.
- W4366593746 cites W2137497575 @default.
- W4366593746 cites W2170238467 @default.
- W4366593746 cites W2171653656 @default.
- W4366593746 cites W2254887719 @default.
- W4366593746 cites W2343027464 @default.
- W4366593746 cites W2476917595 @default.
- W4366593746 cites W2516760155 @default.
- W4366593746 cites W2766244681 @default.
- W4366593746 cites W2768412660 @default.
- W4366593746 cites W2887869579 @default.
- W4366593746 cites W2902239651 @default.
- W4366593746 cites W2962949934 @default.
- W4366593746 cites W2978623673 @default.
- W4366593746 cites W3000018659 @default.
- W4366593746 cites W3040727891 @default.
- W4366593746 cites W3110110188 @default.
- W4366593746 cites W3132652913 @default.
- W4366593746 cites W4205676277 @default.
- W4366593746 cites W4210626476 @default.
- W4366593746 cites W4210813666 @default.
- W4366593746 cites W4306835838 @default.
- W4366593746 cites W4309705505 @default.
- W4366593746 cites W4322616891 @default.
- W4366593746 doi "https://doi.org/10.3390/microorganisms11041071" @default.
- W4366593746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37110493" @default.
- W4366593746 hasPublicationYear "2023" @default.
- W4366593746 type Work @default.
- W4366593746 citedByCount "0" @default.
- W4366593746 crossrefType "journal-article" @default.
- W4366593746 hasAuthorship W4366593746A5008914363 @default.
- W4366593746 hasAuthorship W4366593746A5014418453 @default.
- W4366593746 hasAuthorship W4366593746A5029879807 @default.
- W4366593746 hasAuthorship W4366593746A5037417065 @default.
- W4366593746 hasAuthorship W4366593746A5038272201 @default.
- W4366593746 hasAuthorship W4366593746A5040983615 @default.
- W4366593746 hasAuthorship W4366593746A5056834851 @default.
- W4366593746 hasAuthorship W4366593746A5057703185 @default.
- W4366593746 hasAuthorship W4366593746A5067382683 @default.
- W4366593746 hasAuthorship W4366593746A5068130713 @default.
- W4366593746 hasAuthorship W4366593746A5088901361 @default.
- W4366593746 hasBestOaLocation W43665937461 @default.
- W4366593746 hasConcept C116675565 @default.
- W4366593746 hasConcept C119857082 @default.
- W4366593746 hasConcept C151730666 @default.
- W4366593746 hasConcept C154945302 @default.
- W4366593746 hasConcept C159047783 @default.
- W4366593746 hasConcept C162356407 @default.
- W4366593746 hasConcept C185592680 @default.
- W4366593746 hasConcept C2779343474 @default.
- W4366593746 hasConcept C2779443200 @default.
- W4366593746 hasConcept C2779548794 @default.
- W4366593746 hasConcept C2780651595 @default.
- W4366593746 hasConcept C34736171 @default.
- W4366593746 hasConcept C40325409 @default.
- W4366593746 hasConcept C41008148 @default.
- W4366593746 hasConcept C43617362 @default.
- W4366593746 hasConcept C70721500 @default.
- W4366593746 hasConcept C86803240 @default.
- W4366593746 hasConcept C89423630 @default.
- W4366593746 hasConcept C95623464 @default.
- W4366593746 hasConceptScore W4366593746C116675565 @default.
- W4366593746 hasConceptScore W4366593746C119857082 @default.
- W4366593746 hasConceptScore W4366593746C151730666 @default.
- W4366593746 hasConceptScore W4366593746C154945302 @default.
- W4366593746 hasConceptScore W4366593746C159047783 @default.
- W4366593746 hasConceptScore W4366593746C162356407 @default.
- W4366593746 hasConceptScore W4366593746C185592680 @default.
- W4366593746 hasConceptScore W4366593746C2779343474 @default.
- W4366593746 hasConceptScore W4366593746C2779443200 @default.
- W4366593746 hasConceptScore W4366593746C2779548794 @default.
- W4366593746 hasConceptScore W4366593746C2780651595 @default.
- W4366593746 hasConceptScore W4366593746C34736171 @default.
- W4366593746 hasConceptScore W4366593746C40325409 @default.
- W4366593746 hasConceptScore W4366593746C41008148 @default.
- W4366593746 hasConceptScore W4366593746C43617362 @default.