Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366598205> ?p ?o ?g. }
- W4366598205 endingPage "1921" @default.
- W4366598205 startingPage "1921" @default.
- W4366598205 abstract "Analyzing electroencephalography (EEG) signals with machine learning approaches has become an attractive research domain for linking the brain to the outside world to establish communication in the name of the Brain-Computer Interface (BCI). Many researchers have been working on developing successful motor imagery (MI)-based BCI systems. However, they still face challenges in producing better performance with them because of the irrelevant features and high computational complexity. Selecting discriminative and relevant features to overcome the existing issues is crucial. In our proposed work, different feature selection algorithms have been studied to reduce the dimension of multiband feature space to improve MI task classification performance. In the procedure, we first decomposed the MI-based EEG signal into four sets of the narrowband signal. Then a common spatial pattern (CSP) approach was employed for each narrowband to extract and combine effective features, producing a high-dimensional feature vector. Three feature selection approaches, named correlation-based feature selection (CFS), minimum redundancy and maximum relevance (mRMR), and multi-subspace randomization and collaboration-based unsupervised feature selection (SRCFS), were used in this study to select the relevant and effective features for improving classification accuracy. Among them, the SRCFS feature selection approach demonstrated outstanding performance for MI classification compared to other schemes. The SRCFS is based on the multiple k-nearest neighbour graphs method for learning feature weight based on the Laplacian score and then discarding the irrelevant features based on the weight value, reducing the feature dimension. Finally, the selected features are fed into the support vector machines (SVM), linear discriminative analysis (LDA), and multi-layer perceptron (MLP) for classification. The proposed model is evaluated with two benchmark datasets, namely BCI Competition III dataset IVA and dataset IIIB, which are publicly available and mainly used to recognize the MI tasks. The LDA classifier with the SRCFS feature selection algorithm exhibits better performance. It proves the superiority of our proposed study compared to the other state-of-the-art BCI-based MI task classification systems." @default.
- W4366598205 created "2023-04-23" @default.
- W4366598205 creator A5005221038 @default.
- W4366598205 creator A5017981507 @default.
- W4366598205 creator A5020450110 @default.
- W4366598205 creator A5040776991 @default.
- W4366598205 creator A5047156012 @default.
- W4366598205 creator A5084845516 @default.
- W4366598205 date "2023-04-19" @default.
- W4366598205 modified "2023-10-04" @default.
- W4366598205 title "Investigating Feature Selection Techniques to Enhance the Performance of EEG-Based Motor Imagery Tasks Classification" @default.
- W4366598205 cites W1547702425 @default.
- W4366598205 cites W1973804622 @default.
- W4366598205 cites W2008056655 @default.
- W4366598205 cites W2011799350 @default.
- W4366598205 cites W2027166675 @default.
- W4366598205 cites W2054764914 @default.
- W4366598205 cites W2056582345 @default.
- W4366598205 cites W2101267652 @default.
- W4366598205 cites W2116308679 @default.
- W4366598205 cites W2120000263 @default.
- W4366598205 cites W2142280324 @default.
- W4366598205 cites W2145302786 @default.
- W4366598205 cites W2153912116 @default.
- W4366598205 cites W2156832349 @default.
- W4366598205 cites W2163756472 @default.
- W4366598205 cites W2288754303 @default.
- W4366598205 cites W2521878393 @default.
- W4366598205 cites W2775259072 @default.
- W4366598205 cites W2786419579 @default.
- W4366598205 cites W2789407924 @default.
- W4366598205 cites W2789950121 @default.
- W4366598205 cites W2794345050 @default.
- W4366598205 cites W2800566345 @default.
- W4366598205 cites W2888874411 @default.
- W4366598205 cites W2898291782 @default.
- W4366598205 cites W2902737247 @default.
- W4366598205 cites W2910206545 @default.
- W4366598205 cites W2927212007 @default.
- W4366598205 cites W2945692081 @default.
- W4366598205 cites W2947974121 @default.
- W4366598205 cites W2952594109 @default.
- W4366598205 cites W2979616896 @default.
- W4366598205 cites W2998852862 @default.
- W4366598205 cites W3002381343 @default.
- W4366598205 cites W3005723318 @default.
- W4366598205 cites W3011669218 @default.
- W4366598205 cites W3026899257 @default.
- W4366598205 cites W3042717062 @default.
- W4366598205 cites W3079215233 @default.
- W4366598205 cites W3109265671 @default.
- W4366598205 cites W3112158327 @default.
- W4366598205 cites W3117821710 @default.
- W4366598205 cites W3119308196 @default.
- W4366598205 cites W3120610005 @default.
- W4366598205 cites W3123356826 @default.
- W4366598205 cites W3126122061 @default.
- W4366598205 cites W3127935830 @default.
- W4366598205 cites W3160098135 @default.
- W4366598205 cites W4205875334 @default.
- W4366598205 cites W4220999236 @default.
- W4366598205 cites W4286340187 @default.
- W4366598205 cites W4292263626 @default.
- W4366598205 cites W4316658613 @default.
- W4366598205 doi "https://doi.org/10.3390/math11081921" @default.
- W4366598205 hasPublicationYear "2023" @default.
- W4366598205 type Work @default.
- W4366598205 citedByCount "4" @default.
- W4366598205 countsByYear W43665982052023 @default.
- W4366598205 crossrefType "journal-article" @default.
- W4366598205 hasAuthorship W4366598205A5005221038 @default.
- W4366598205 hasAuthorship W4366598205A5017981507 @default.
- W4366598205 hasAuthorship W4366598205A5020450110 @default.
- W4366598205 hasAuthorship W4366598205A5040776991 @default.
- W4366598205 hasAuthorship W4366598205A5047156012 @default.
- W4366598205 hasAuthorship W4366598205A5084845516 @default.
- W4366598205 hasBestOaLocation W43665982051 @default.
- W4366598205 hasConcept C111919701 @default.
- W4366598205 hasConcept C113238511 @default.
- W4366598205 hasConcept C118552586 @default.
- W4366598205 hasConcept C119857082 @default.
- W4366598205 hasConcept C12267149 @default.
- W4366598205 hasConcept C138885662 @default.
- W4366598205 hasConcept C148483581 @default.
- W4366598205 hasConcept C152124472 @default.
- W4366598205 hasConcept C153180895 @default.
- W4366598205 hasConcept C154945302 @default.
- W4366598205 hasConcept C15744967 @default.
- W4366598205 hasConcept C173201364 @default.
- W4366598205 hasConcept C2776401178 @default.
- W4366598205 hasConcept C41008148 @default.
- W4366598205 hasConcept C41895202 @default.
- W4366598205 hasConcept C522805319 @default.
- W4366598205 hasConcept C54808283 @default.
- W4366598205 hasConcept C70518039 @default.
- W4366598205 hasConcept C83665646 @default.
- W4366598205 hasConcept C97931131 @default.
- W4366598205 hasConceptScore W4366598205C111919701 @default.