Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366599272> ?p ?o ?g. }
Showing items 1 to 41 of
41
with 100 items per page.
- W4366599272 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> With semiconductor technology gradually approaching its physical and thermal limits, Graphics processing unit (GPU) is becoming an attractive solution in many scientific applications due to their high performance. This paper presents an application of GPU accelerators in air quality model. We endeavor to demonstrate an approach that runs a PPM solver of horizontal advection (HADVPPM) for air quality model CAMx on GPU clusters. Specifically, we first convert the HADVPPM to a new Compute Unified Device Architecture C (CUDA C) code to make it computable on the GPU (GPU-HADVPPM). Then, a series of optimization measures are taken, including reducing the CPU-GPU communication frequency, increasing the size of data computation on GPU, optimizing the GPU memory access, and using thread and block indices in order to improve the overall computing performance of CAMx model coupled with GPU-HADVPPM (named as CAMx-CUDA model). Finally, a heterogeneous, hybrid programming paradigm is presented and utilized with the GPU-HADVPPM on GPU clusters with Massage Passing Interface (MPI) and CUDA. Offline experiment results show that running GPU-HADVPPM on one NVIDIA Tesla K40m and NVIDIA Tesla V100 GPU can achieve up to 845.4x and 1113.6x acceleration. By implementing a series of optimization schemes, the CAMx-CUDA model resulted in a 29.0x and 128.4x improvement in computational efficiency using a GPU accelerator card on a K40m and V100 cluster, respectively. In terms of the single-module computational efficiency of GPU-HADVPPM, it can achieve 1.3x and 19.4x speedup on NVIDIA Tesla K40m GPU and NVIDA Tesla V100 GPU respectively. The multi-GPU acceleration algorithm enables 4.5x speedup with 8 CPU cores and 8 GPU accelerators on V100 cluster." @default.
- W4366599272 created "2023-04-23" @default.
- W4366599272 date "2023-04-20" @default.
- W4366599272 modified "2023-09-24" @default.
- W4366599272 title "Comment on egusphere-2023-410" @default.
- W4366599272 doi "https://doi.org/10.5194/egusphere-2023-410-cc1" @default.
- W4366599272 hasPublicationYear "2023" @default.
- W4366599272 type Work @default.
- W4366599272 citedByCount "0" @default.
- W4366599272 crossrefType "peer-review" @default.
- W4366599272 hasBestOaLocation W43665992721 @default.
- W4366599272 hasConcept C173608175 @default.
- W4366599272 hasConcept C2778119891 @default.
- W4366599272 hasConcept C2779851693 @default.
- W4366599272 hasConcept C2781335571 @default.
- W4366599272 hasConcept C41008148 @default.
- W4366599272 hasConcept C459310 @default.
- W4366599272 hasConcept C68339613 @default.
- W4366599272 hasConceptScore W4366599272C173608175 @default.
- W4366599272 hasConceptScore W4366599272C2778119891 @default.
- W4366599272 hasConceptScore W4366599272C2779851693 @default.
- W4366599272 hasConceptScore W4366599272C2781335571 @default.
- W4366599272 hasConceptScore W4366599272C41008148 @default.
- W4366599272 hasConceptScore W4366599272C459310 @default.
- W4366599272 hasConceptScore W4366599272C68339613 @default.
- W4366599272 hasLocation W43665992721 @default.
- W4366599272 hasOpenAccess W4366599272 @default.
- W4366599272 hasPrimaryLocation W43665992721 @default.
- W4366599272 hasRelatedWork W108745714 @default.
- W4366599272 hasRelatedWork W1993048673 @default.
- W4366599272 hasRelatedWork W2008063788 @default.
- W4366599272 hasRelatedWork W2032344319 @default.
- W4366599272 hasRelatedWork W2045400447 @default.
- W4366599272 hasRelatedWork W2315136210 @default.
- W4366599272 hasRelatedWork W2329155633 @default.
- W4366599272 hasRelatedWork W2525552184 @default.
- W4366599272 hasRelatedWork W2554083593 @default.
- W4366599272 hasRelatedWork W4226437700 @default.
- W4366599272 isParatext "false" @default.
- W4366599272 isRetracted "false" @default.
- W4366599272 workType "peer-review" @default.