Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366602904> ?p ?o ?g. }
- W4366602904 abstract "Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance.Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z)." @default.
- W4366602904 created "2023-04-23" @default.
- W4366602904 creator A5000087814 @default.
- W4366602904 creator A5000272377 @default.
- W4366602904 creator A5002594174 @default.
- W4366602904 creator A5002631913 @default.
- W4366602904 creator A5004619229 @default.
- W4366602904 creator A5005259439 @default.
- W4366602904 creator A5005552795 @default.
- W4366602904 creator A5005991347 @default.
- W4366602904 creator A5006128440 @default.
- W4366602904 creator A5006297907 @default.
- W4366602904 creator A5006607273 @default.
- W4366602904 creator A5007019366 @default.
- W4366602904 creator A5007216970 @default.
- W4366602904 creator A5008261688 @default.
- W4366602904 creator A5008421418 @default.
- W4366602904 creator A5008788122 @default.
- W4366602904 creator A5009073753 @default.
- W4366602904 creator A5009808960 @default.
- W4366602904 creator A5009979816 @default.
- W4366602904 creator A5011544775 @default.
- W4366602904 creator A5012283901 @default.
- W4366602904 creator A5013551578 @default.
- W4366602904 creator A5016996369 @default.
- W4366602904 creator A5017416729 @default.
- W4366602904 creator A5018113568 @default.
- W4366602904 creator A5018785431 @default.
- W4366602904 creator A5019011935 @default.
- W4366602904 creator A5020293284 @default.
- W4366602904 creator A5020656716 @default.
- W4366602904 creator A5021943787 @default.
- W4366602904 creator A5025955938 @default.
- W4366602904 creator A5026648556 @default.
- W4366602904 creator A5027162836 @default.
- W4366602904 creator A5028049979 @default.
- W4366602904 creator A5029764109 @default.
- W4366602904 creator A5029889274 @default.
- W4366602904 creator A5030739187 @default.
- W4366602904 creator A5031017324 @default.
- W4366602904 creator A5031381738 @default.
- W4366602904 creator A5032079957 @default.
- W4366602904 creator A5032436254 @default.
- W4366602904 creator A5032896500 @default.
- W4366602904 creator A5033745823 @default.
- W4366602904 creator A5033880198 @default.
- W4366602904 creator A5034384871 @default.
- W4366602904 creator A5034743880 @default.
- W4366602904 creator A5035546128 @default.
- W4366602904 creator A5036197623 @default.
- W4366602904 creator A5036326710 @default.
- W4366602904 creator A5036449193 @default.
- W4366602904 creator A5037330583 @default.
- W4366602904 creator A5038703966 @default.
- W4366602904 creator A5039041524 @default.
- W4366602904 creator A5039924624 @default.
- W4366602904 creator A5040346890 @default.
- W4366602904 creator A5041668511 @default.
- W4366602904 creator A5043253977 @default.
- W4366602904 creator A5046835864 @default.
- W4366602904 creator A5046912670 @default.
- W4366602904 creator A5047981598 @default.
- W4366602904 creator A5048096509 @default.
- W4366602904 creator A5048245082 @default.
- W4366602904 creator A5049514074 @default.
- W4366602904 creator A5051364218 @default.
- W4366602904 creator A5052203594 @default.
- W4366602904 creator A5053494389 @default.
- W4366602904 creator A5054307994 @default.
- W4366602904 creator A5054448743 @default.
- W4366602904 creator A5054628351 @default.
- W4366602904 creator A5057059202 @default.
- W4366602904 creator A5058126077 @default.
- W4366602904 creator A5058720464 @default.
- W4366602904 creator A5058780537 @default.
- W4366602904 creator A5059060208 @default.
- W4366602904 creator A5059068291 @default.
- W4366602904 creator A5059863311 @default.
- W4366602904 creator A5060286617 @default.
- W4366602904 creator A5061155671 @default.
- W4366602904 creator A5061309772 @default.
- W4366602904 creator A5062121632 @default.
- W4366602904 creator A5063184302 @default.
- W4366602904 creator A5063474508 @default.
- W4366602904 creator A5064012222 @default.
- W4366602904 creator A5064948856 @default.
- W4366602904 creator A5065490844 @default.
- W4366602904 creator A5065606735 @default.
- W4366602904 creator A5065779040 @default.
- W4366602904 creator A5067528456 @default.
- W4366602904 creator A5068363272 @default.
- W4366602904 creator A5069909932 @default.
- W4366602904 creator A5071543888 @default.
- W4366602904 creator A5071617273 @default.
- W4366602904 creator A5071697370 @default.
- W4366602904 creator A5071846631 @default.
- W4366602904 creator A5072466998 @default.
- W4366602904 creator A5072570670 @default.
- W4366602904 creator A5073157681 @default.
- W4366602904 creator A5073349248 @default.