Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366603572> ?p ?o ?g. }
- W4366603572 abstract "Abstract Motivation The ability to measure the phenotype of millions of different genetic designs using Massively Parallel Reporter Assays (MPRAs) has revolutionized our understanding of genotype-to-phenotype relationships and opened avenues for data-centric approaches to biological design. However, our knowledge of how best to design these costly experiments and the effect that our choices have on the quality of the data produced is lacking. Results In this article, we tackle the issues of data quality and experimental design by developing FORECAST, a Python package that supports the accurate simulation of cell-sorting and sequencing-based MPRAs and robust maximum likelihood-based inference of genetic design function from MPRA data. We use FORECAST’s capabilities to reveal rules for MPRA experimental design that help ensure accurate genotype-to-phenotype links and show how the simulation of MPRA experiments can help us better understand the limits of prediction accuracy when this data are used for training deep learning-based classifiers. As the scale and scope of MPRAs grows, tools like FORECAST will help ensure we make informed decisions during their development and the most of the data produced. Availability and implementation The FORECAST package is available at: https://gitlab.com/Pierre-Aurelien/forecast. Code for the deep learning analysis performed in this study is available at: https://gitlab.com/Pierre-Aurelien/rebeca." @default.
- W4366603572 created "2023-04-23" @default.
- W4366603572 creator A5000195963 @default.
- W4366603572 creator A5068800583 @default.
- W4366603572 date "2023-04-21" @default.
- W4366603572 modified "2023-09-30" @default.
- W4366603572 title "Effective design and inference for cell sorting and sequencing based massively parallel reporter assays" @default.
- W4366603572 cites W1969026947 @default.
- W4366603572 cites W2000137108 @default.
- W4366603572 cites W2001426985 @default.
- W4366603572 cites W2014018052 @default.
- W4366603572 cites W2018645639 @default.
- W4366603572 cites W2023386301 @default.
- W4366603572 cites W2029583307 @default.
- W4366603572 cites W2047360542 @default.
- W4366603572 cites W2053460598 @default.
- W4366603572 cites W2100448568 @default.
- W4366603572 cites W2108842036 @default.
- W4366603572 cites W2115368299 @default.
- W4366603572 cites W2119034410 @default.
- W4366603572 cites W2121211805 @default.
- W4366603572 cites W2122930146 @default.
- W4366603572 cites W2144527178 @default.
- W4366603572 cites W2145674897 @default.
- W4366603572 cites W2159933659 @default.
- W4366603572 cites W2273190468 @default.
- W4366603572 cites W2294418165 @default.
- W4366603572 cites W2336509392 @default.
- W4366603572 cites W2379594833 @default.
- W4366603572 cites W2558189049 @default.
- W4366603572 cites W2766831674 @default.
- W4366603572 cites W2784779095 @default.
- W4366603572 cites W2804535652 @default.
- W4366603572 cites W2892180666 @default.
- W4366603572 cites W2897155977 @default.
- W4366603572 cites W2901218091 @default.
- W4366603572 cites W2905097210 @default.
- W4366603572 cites W2951203227 @default.
- W4366603572 cites W2955231772 @default.
- W4366603572 cites W2990395719 @default.
- W4366603572 cites W3007004468 @default.
- W4366603572 cites W3012924811 @default.
- W4366603572 cites W3023962428 @default.
- W4366603572 cites W3026224917 @default.
- W4366603572 cites W3026733594 @default.
- W4366603572 cites W3092434764 @default.
- W4366603572 cites W3134475766 @default.
- W4366603572 cites W3145085575 @default.
- W4366603572 cites W3172958496 @default.
- W4366603572 cites W3173082045 @default.
- W4366603572 cites W4220746215 @default.
- W4366603572 cites W4221128536 @default.
- W4366603572 cites W4225691151 @default.
- W4366603572 cites W4293567474 @default.
- W4366603572 cites W4294237795 @default.
- W4366603572 cites W4309494734 @default.
- W4366603572 cites W4321748135 @default.
- W4366603572 doi "https://doi.org/10.1093/bioinformatics/btad277" @default.
- W4366603572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37084251" @default.
- W4366603572 hasPublicationYear "2023" @default.
- W4366603572 type Work @default.
- W4366603572 citedByCount "0" @default.
- W4366603572 crossrefType "journal-article" @default.
- W4366603572 hasAuthorship W4366603572A5000195963 @default.
- W4366603572 hasAuthorship W4366603572A5068800583 @default.
- W4366603572 hasBestOaLocation W43666035721 @default.
- W4366603572 hasConcept C111696304 @default.
- W4366603572 hasConcept C119857082 @default.
- W4366603572 hasConcept C124101348 @default.
- W4366603572 hasConcept C154945302 @default.
- W4366603572 hasConcept C173608175 @default.
- W4366603572 hasConcept C190475519 @default.
- W4366603572 hasConcept C199360897 @default.
- W4366603572 hasConcept C2776214188 @default.
- W4366603572 hasConcept C41008148 @default.
- W4366603572 hasConcept C519991488 @default.
- W4366603572 hasConceptScore W4366603572C111696304 @default.
- W4366603572 hasConceptScore W4366603572C119857082 @default.
- W4366603572 hasConceptScore W4366603572C124101348 @default.
- W4366603572 hasConceptScore W4366603572C154945302 @default.
- W4366603572 hasConceptScore W4366603572C173608175 @default.
- W4366603572 hasConceptScore W4366603572C190475519 @default.
- W4366603572 hasConceptScore W4366603572C199360897 @default.
- W4366603572 hasConceptScore W4366603572C2776214188 @default.
- W4366603572 hasConceptScore W4366603572C41008148 @default.
- W4366603572 hasConceptScore W4366603572C519991488 @default.
- W4366603572 hasIssue "5" @default.
- W4366603572 hasLocation W43666035721 @default.
- W4366603572 hasLocation W43666035722 @default.
- W4366603572 hasLocation W43666035723 @default.
- W4366603572 hasLocation W43666035724 @default.
- W4366603572 hasOpenAccess W4366603572 @default.
- W4366603572 hasPrimaryLocation W43666035721 @default.
- W4366603572 hasRelatedWork W1505667720 @default.
- W4366603572 hasRelatedWork W2117141678 @default.
- W4366603572 hasRelatedWork W2327204559 @default.
- W4366603572 hasRelatedWork W2587671147 @default.
- W4366603572 hasRelatedWork W2623240261 @default.
- W4366603572 hasRelatedWork W2961085424 @default.
- W4366603572 hasRelatedWork W3129254793 @default.