Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366606483> ?p ?o ?g. }
- W4366606483 endingPage "120213" @default.
- W4366606483 startingPage "120213" @default.
- W4366606483 abstract "Estimating three-dimensional (3D) human poses from two-dimensional (2D) joints has achieved promising results. However, there is relatively little work focused on exploiting domain-specific knowledge as prior. In this work, we present a learning framework based on prior knowledge for the task of estimating a 3D human pose from a 2D pose. In contrast to other state-of-the-art 3D pose estimation approaches, the proposed method is a systematic analysis pipeline that takes full advantage of prior knowledge based on three observations. The proposed approach can model the spatial and temporal relations between joints to achieve better performance. Our approach formulates the learning network as an encoder–decoder architecture that explicitly encodes prior knowledge about the task. The encoder is a multi-head self-attention network which can capture human joint spatial relations. The decoder is formulated as three separated sub-networks, each sub-network represents a kinematic chain which is derived from our prior knowledge about human motion. The experimental results on the Human3.6M, HumanEva and MPI-INF-3DHP datasets demonstrate the effectiveness of our approach. The code and data are available at https://github.com/XTU-PR-LAB/PK-SAN." @default.
- W4366606483 created "2023-04-23" @default.
- W4366606483 creator A5044614980 @default.
- W4366606483 creator A5062015169 @default.
- W4366606483 creator A5090474019 @default.
- W4366606483 date "2023-09-01" @default.
- W4366606483 modified "2023-10-05" @default.
- W4366606483 title "Prior-knowledge-based self-attention network for 3D human pose estimation" @default.
- W4366606483 cites W1967554269 @default.
- W4366606483 cites W2011415644 @default.
- W4366606483 cites W2018854916 @default.
- W4366606483 cites W2029068649 @default.
- W4366606483 cites W2099333815 @default.
- W4366606483 cites W2101032778 @default.
- W4366606483 cites W2345033116 @default.
- W4366606483 cites W2554247908 @default.
- W4366606483 cites W2612706635 @default.
- W4366606483 cites W2798646183 @default.
- W4366606483 cites W2809890486 @default.
- W4366606483 cites W2895689136 @default.
- W4366606483 cites W2934361577 @default.
- W4366606483 cites W2962849564 @default.
- W4366606483 cites W2962896489 @default.
- W4366606483 cites W2963383668 @default.
- W4366606483 cites W2963441822 @default.
- W4366606483 cites W2963563276 @default.
- W4366606483 cites W2963598138 @default.
- W4366606483 cites W2963995996 @default.
- W4366606483 cites W2966735886 @default.
- W4366606483 cites W2968459013 @default.
- W4366606483 cites W2972662547 @default.
- W4366606483 cites W2981637078 @default.
- W4366606483 cites W2982627166 @default.
- W4366606483 cites W2984349976 @default.
- W4366606483 cites W2987343143 @default.
- W4366606483 cites W3034448411 @default.
- W4366606483 cites W3034581612 @default.
- W4366606483 cites W3035551320 @default.
- W4366606483 cites W3098473649 @default.
- W4366606483 cites W3098612954 @default.
- W4366606483 cites W3126541466 @default.
- W4366606483 cites W3136525061 @default.
- W4366606483 cites W3167491448 @default.
- W4366606483 cites W3169979116 @default.
- W4366606483 cites W3173283771 @default.
- W4366606483 cites W3173811519 @default.
- W4366606483 cites W3175199633 @default.
- W4366606483 cites W3175213557 @default.
- W4366606483 cites W3177949351 @default.
- W4366606483 cites W3194852071 @default.
- W4366606483 cites W3202716970 @default.
- W4366606483 cites W4214755140 @default.
- W4366606483 cites W4312249545 @default.
- W4366606483 cites W4312417903 @default.
- W4366606483 doi "https://doi.org/10.1016/j.eswa.2023.120213" @default.
- W4366606483 hasPublicationYear "2023" @default.
- W4366606483 type Work @default.
- W4366606483 citedByCount "0" @default.
- W4366606483 crossrefType "journal-article" @default.
- W4366606483 hasAuthorship W4366606483A5044614980 @default.
- W4366606483 hasAuthorship W4366606483A5062015169 @default.
- W4366606483 hasAuthorship W4366606483A5090474019 @default.
- W4366606483 hasBestOaLocation W43666064831 @default.
- W4366606483 hasConcept C111919701 @default.
- W4366606483 hasConcept C118505674 @default.
- W4366606483 hasConcept C119857082 @default.
- W4366606483 hasConcept C121332964 @default.
- W4366606483 hasConcept C134306372 @default.
- W4366606483 hasConcept C153180895 @default.
- W4366606483 hasConcept C154945302 @default.
- W4366606483 hasConcept C162324750 @default.
- W4366606483 hasConcept C177264268 @default.
- W4366606483 hasConcept C187736073 @default.
- W4366606483 hasConcept C199360897 @default.
- W4366606483 hasConcept C207685749 @default.
- W4366606483 hasConcept C2776760102 @default.
- W4366606483 hasConcept C2780451532 @default.
- W4366606483 hasConcept C33923547 @default.
- W4366606483 hasConcept C36503486 @default.
- W4366606483 hasConcept C39920418 @default.
- W4366606483 hasConcept C41008148 @default.
- W4366606483 hasConcept C43521106 @default.
- W4366606483 hasConcept C52102323 @default.
- W4366606483 hasConcept C74650414 @default.
- W4366606483 hasConceptScore W4366606483C111919701 @default.
- W4366606483 hasConceptScore W4366606483C118505674 @default.
- W4366606483 hasConceptScore W4366606483C119857082 @default.
- W4366606483 hasConceptScore W4366606483C121332964 @default.
- W4366606483 hasConceptScore W4366606483C134306372 @default.
- W4366606483 hasConceptScore W4366606483C153180895 @default.
- W4366606483 hasConceptScore W4366606483C154945302 @default.
- W4366606483 hasConceptScore W4366606483C162324750 @default.
- W4366606483 hasConceptScore W4366606483C177264268 @default.
- W4366606483 hasConceptScore W4366606483C187736073 @default.
- W4366606483 hasConceptScore W4366606483C199360897 @default.
- W4366606483 hasConceptScore W4366606483C207685749 @default.
- W4366606483 hasConceptScore W4366606483C2776760102 @default.
- W4366606483 hasConceptScore W4366606483C2780451532 @default.