Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366606692> ?p ?o ?g. }
- W4366606692 endingPage "163571" @default.
- W4366606692 startingPage "163571" @default.
- W4366606692 abstract "Ecological flow early warning is crucial for the rational management of watershed water resources. However, determining of accurate ecological flow threshold and choosing the appropriate forecasting model are challenging tasks. In this study, we initially developed a baseflow separation and Tennant method-based technique for calculating ecological river flow. Then an ecological flow early warning model was created using the machine learning technique based on distributed gradient enhancement framework (LightGBM). Finally, we utilized the framework of Shapley Additive Planning (SHAP) to explain how various hydrometeorological factors affect the variations in ecological flow conditions. The Jiaojiang River basin in southeast China is selected as the study area, and the hydrological stations in upstream of Baizhiao (BZA) and Shaduan (SD) are chosen for key analysis. The results of these applications show that the monthly baseflow frequency of the river ecological flow conditions of the two stations in the dry season is 20 % (7.49 m3/s) and 30 % (4.79 m3/s), respectively. The ecological flow level early warning forecasting accuracy is close to 90 % in the BZA and SD stations during dry and wet seasons. The variations of ecological flow are most affected by evaporation and base flow index. The results of this study can serve as a strong basis for the effective allocation and utilization of locally available water resources." @default.
- W4366606692 created "2023-04-23" @default.
- W4366606692 creator A5000108862 @default.
- W4366606692 creator A5013823125 @default.
- W4366606692 creator A5019978133 @default.
- W4366606692 creator A5022499603 @default.
- W4366606692 creator A5024649056 @default.
- W4366606692 creator A5027582299 @default.
- W4366606692 creator A5044952793 @default.
- W4366606692 creator A5067603088 @default.
- W4366606692 date "2023-07-01" @default.
- W4366606692 modified "2023-10-06" @default.
- W4366606692 title "River ecological flow early warning forecasting using baseflow separation and machine learning in the Jiaojiang River Basin, Southeast China" @default.
- W4366606692 cites W2018904035 @default.
- W4366606692 cites W2041595215 @default.
- W4366606692 cites W2156353061 @default.
- W4366606692 cites W2160908538 @default.
- W4366606692 cites W2259175676 @default.
- W4366606692 cites W2312135541 @default.
- W4366606692 cites W2548891137 @default.
- W4366606692 cites W2739785522 @default.
- W4366606692 cites W2763085881 @default.
- W4366606692 cites W2787693487 @default.
- W4366606692 cites W2794260032 @default.
- W4366606692 cites W2794541504 @default.
- W4366606692 cites W2795390131 @default.
- W4366606692 cites W2799918535 @default.
- W4366606692 cites W2810434350 @default.
- W4366606692 cites W2815792770 @default.
- W4366606692 cites W2885172420 @default.
- W4366606692 cites W2892239257 @default.
- W4366606692 cites W2902272573 @default.
- W4366606692 cites W2912459523 @default.
- W4366606692 cites W2914650191 @default.
- W4366606692 cites W2922348686 @default.
- W4366606692 cites W2932054448 @default.
- W4366606692 cites W2945078152 @default.
- W4366606692 cites W2947064583 @default.
- W4366606692 cites W2973015150 @default.
- W4366606692 cites W2976332861 @default.
- W4366606692 cites W2987400793 @default.
- W4366606692 cites W2996516590 @default.
- W4366606692 cites W2996830706 @default.
- W4366606692 cites W2999010506 @default.
- W4366606692 cites W3003675383 @default.
- W4366606692 cites W3004015510 @default.
- W4366606692 cites W3024727387 @default.
- W4366606692 cites W3027247947 @default.
- W4366606692 cites W3042001458 @default.
- W4366606692 cites W3043465574 @default.
- W4366606692 cites W3046587533 @default.
- W4366606692 cites W3087760627 @default.
- W4366606692 cites W3089085821 @default.
- W4366606692 cites W3092066842 @default.
- W4366606692 cites W3093602794 @default.
- W4366606692 cites W3093670493 @default.
- W4366606692 cites W3093997868 @default.
- W4366606692 cites W3095076421 @default.
- W4366606692 cites W3106460977 @default.
- W4366606692 cites W3113372098 @default.
- W4366606692 cites W3122993262 @default.
- W4366606692 cites W3133625653 @default.
- W4366606692 cites W3137561756 @default.
- W4366606692 cites W3138970604 @default.
- W4366606692 cites W3159276933 @default.
- W4366606692 cites W3161929512 @default.
- W4366606692 cites W3193765964 @default.
- W4366606692 cites W3205194988 @default.
- W4366606692 cites W3209101877 @default.
- W4366606692 cites W3215049759 @default.
- W4366606692 cites W3216921070 @default.
- W4366606692 cites W4205849317 @default.
- W4366606692 cites W4211230713 @default.
- W4366606692 cites W4220990433 @default.
- W4366606692 cites W4226271739 @default.
- W4366606692 cites W4280513285 @default.
- W4366606692 cites W4282932849 @default.
- W4366606692 cites W4283763545 @default.
- W4366606692 cites W4293102091 @default.
- W4366606692 doi "https://doi.org/10.1016/j.scitotenv.2023.163571" @default.
- W4366606692 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37087001" @default.
- W4366606692 hasPublicationYear "2023" @default.
- W4366606692 type Work @default.
- W4366606692 citedByCount "0" @default.
- W4366606692 crossrefType "journal-article" @default.
- W4366606692 hasAuthorship W4366606692A5000108862 @default.
- W4366606692 hasAuthorship W4366606692A5013823125 @default.
- W4366606692 hasAuthorship W4366606692A5019978133 @default.
- W4366606692 hasAuthorship W4366606692A5022499603 @default.
- W4366606692 hasAuthorship W4366606692A5024649056 @default.
- W4366606692 hasAuthorship W4366606692A5027582299 @default.
- W4366606692 hasAuthorship W4366606692A5044952793 @default.
- W4366606692 hasAuthorship W4366606692A5067603088 @default.
- W4366606692 hasConcept C100725284 @default.
- W4366606692 hasConcept C107054158 @default.
- W4366606692 hasConcept C109007969 @default.
- W4366606692 hasConcept C119857082 @default.
- W4366606692 hasConcept C126645576 @default.