Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366607402> ?p ?o ?g. }
- W4366607402 endingPage "101813" @default.
- W4366607402 startingPage "101813" @default.
- W4366607402 abstract "Cardiac Syndrome X (CSX) is a very dangerous cardiovascular disease characterized by angina-like chest discomfort and pain on effort despite normal epicardial coronary arteries at angiography. In this study, we used a CSX dataset from the coronary angiography registry of Tehran’s Heart Center at Tehran University of Medical Sciences in Iran to develop several machine learning (ML) methods combined with uncertainty quantification of the obtained results. Uncertainty quantification plays a significant role in both traditional machine learning (ML) and deep learning (DL) studies allowing researchers to create trustable clinical detection systems. We propose a novel Mixture-of-Experts (MoE) model, called Binarized Multi-Gate Mixture of Bayesian Experts (MoBE), which is an effective ensemble technique for accurately classifying CSX data. The proposed binarized multi-gate model relies on a double quantified uncertainty strategy at the feature selection and decision making stages. First, we use a clinician-in-the-loop scenario with a belief-uncertainty paradigm at the feature selection stage. Second, we use Bayesian neural networks (BNNs) as experts in MoBE and Monte Carlo (MC) dropout for gates at the decision making uncertainty quantification stage. The proposed binarized multi-gate model reaches an accuracy of 85% when applied to our benchmark CSX dataset from Tehran’s Heart Center." @default.
- W4366607402 created "2023-04-23" @default.
- W4366607402 creator A5004592090 @default.
- W4366607402 creator A5014000715 @default.
- W4366607402 creator A5015293969 @default.
- W4366607402 creator A5018689511 @default.
- W4366607402 creator A5021720735 @default.
- W4366607402 creator A5022241147 @default.
- W4366607402 creator A5028460960 @default.
- W4366607402 creator A5032360746 @default.
- W4366607402 creator A5048198375 @default.
- W4366607402 creator A5053868879 @default.
- W4366607402 creator A5059557438 @default.
- W4366607402 creator A5078909305 @default.
- W4366607402 creator A5079265136 @default.
- W4366607402 creator A5080757499 @default.
- W4366607402 creator A5081459146 @default.
- W4366607402 date "2023-09-01" @default.
- W4366607402 modified "2023-10-18" @default.
- W4366607402 title "Binarized multi-gate mixture of Bayesian experts for cardiac syndrome X diagnosis: A clinician-in-the-loop scenario with a belief-uncertainty fusion paradigm" @default.
- W4366607402 cites W1934789023 @default.
- W4366607402 cites W1971926213 @default.
- W4366607402 cites W1991361881 @default.
- W4366607402 cites W1995509911 @default.
- W4366607402 cites W2006706374 @default.
- W4366607402 cites W2024931228 @default.
- W4366607402 cites W2025653905 @default.
- W4366607402 cites W2055307975 @default.
- W4366607402 cites W2074026200 @default.
- W4366607402 cites W2133187714 @default.
- W4366607402 cites W2151739272 @default.
- W4366607402 cites W2170505850 @default.
- W4366607402 cites W2314578140 @default.
- W4366607402 cites W2329534254 @default.
- W4366607402 cites W2620656322 @default.
- W4366607402 cites W2784094750 @default.
- W4366607402 cites W2794228650 @default.
- W4366607402 cites W2809290718 @default.
- W4366607402 cites W2899921784 @default.
- W4366607402 cites W2902644322 @default.
- W4366607402 cites W2903206626 @default.
- W4366607402 cites W2910282362 @default.
- W4366607402 cites W2910550441 @default.
- W4366607402 cites W2919115771 @default.
- W4366607402 cites W2944193307 @default.
- W4366607402 cites W2945583287 @default.
- W4366607402 cites W2948009788 @default.
- W4366607402 cites W2963095307 @default.
- W4366607402 cites W2963565281 @default.
- W4366607402 cites W2965563166 @default.
- W4366607402 cites W2965743638 @default.
- W4366607402 cites W2990726790 @default.
- W4366607402 cites W2991813872 @default.
- W4366607402 cites W2995523160 @default.
- W4366607402 cites W3001683732 @default.
- W4366607402 cites W3006340151 @default.
- W4366607402 cites W3023596779 @default.
- W4366607402 cites W3026649003 @default.
- W4366607402 cites W3026687416 @default.
- W4366607402 cites W3040916326 @default.
- W4366607402 cites W3064554225 @default.
- W4366607402 cites W3088053597 @default.
- W4366607402 cites W3091908957 @default.
- W4366607402 cites W3092596753 @default.
- W4366607402 cites W3097937964 @default.
- W4366607402 cites W3102100346 @default.
- W4366607402 cites W3127657277 @default.
- W4366607402 cites W3135849576 @default.
- W4366607402 cites W3158436118 @default.
- W4366607402 cites W3160056982 @default.
- W4366607402 cites W3162188565 @default.
- W4366607402 cites W3164773673 @default.
- W4366607402 cites W3168572965 @default.
- W4366607402 cites W3171133750 @default.
- W4366607402 cites W3178621454 @default.
- W4366607402 cites W3196633171 @default.
- W4366607402 cites W3200973167 @default.
- W4366607402 cites W3201100139 @default.
- W4366607402 cites W3215200159 @default.
- W4366607402 cites W4205895239 @default.
- W4366607402 cites W4224253599 @default.
- W4366607402 cites W4224316937 @default.
- W4366607402 cites W4292622305 @default.
- W4366607402 cites W4296682036 @default.
- W4366607402 cites W4303985859 @default.
- W4366607402 cites W4307112082 @default.
- W4366607402 cites W4312553738 @default.
- W4366607402 cites W54837404 @default.
- W4366607402 doi "https://doi.org/10.1016/j.inffus.2023.101813" @default.
- W4366607402 hasPublicationYear "2023" @default.
- W4366607402 type Work @default.
- W4366607402 citedByCount "4" @default.
- W4366607402 countsByYear W43666074022023 @default.
- W4366607402 crossrefType "journal-article" @default.
- W4366607402 hasAuthorship W4366607402A5004592090 @default.
- W4366607402 hasAuthorship W4366607402A5014000715 @default.
- W4366607402 hasAuthorship W4366607402A5015293969 @default.
- W4366607402 hasAuthorship W4366607402A5018689511 @default.