Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366607520> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4366607520 abstract "Federated learning is a new distributed machine learning model training method, which can protect user privacy while enabling a large number of edge devices to train a shared model based on their local data sets, and enable participants to benefit from each other. However, federated learning also faces some serious challenges, such as resource constraints, uneven data distribution, edge dynamics, and so on. Moreover, the existing federated learning methods may lead to long training time, consume a lot of bandwidth and other resources, and the heterogeneity of edge devices further worsens the inherent synchronization barrier problem of federated learning. In response to the above problems, this paper studies the existing model optimization technologies of federated learning, including node selection mechanism, local data enhancement, model compression, local update, gradient compression and other model optimization technologies, and summarizes and analyzes them." @default.
- W4366607520 created "2023-04-23" @default.
- W4366607520 creator A5052377890 @default.
- W4366607520 creator A5063696766 @default.
- W4366607520 date "2023-03-03" @default.
- W4366607520 modified "2023-09-26" @default.
- W4366607520 title "Research on Model Optimization Technology of Federated Learning" @default.
- W4366607520 cites W2552857149 @default.
- W4366607520 cites W2591882872 @default.
- W4366607520 cites W2907638403 @default.
- W4366607520 cites W2965341441 @default.
- W4366607520 cites W2974175488 @default.
- W4366607520 cites W2975156709 @default.
- W4366607520 cites W2982464076 @default.
- W4366607520 cites W2989253922 @default.
- W4366607520 cites W3001989995 @default.
- W4366607520 cites W3014538993 @default.
- W4366607520 cites W3015515533 @default.
- W4366607520 cites W3015636663 @default.
- W4366607520 cites W3021909663 @default.
- W4366607520 cites W3033686777 @default.
- W4366607520 cites W3037582816 @default.
- W4366607520 cites W3092144916 @default.
- W4366607520 cites W3113075536 @default.
- W4366607520 cites W3139119893 @default.
- W4366607520 cites W3154459044 @default.
- W4366607520 cites W3156717451 @default.
- W4366607520 cites W3180608480 @default.
- W4366607520 cites W3196101383 @default.
- W4366607520 cites W3204183032 @default.
- W4366607520 cites W4200548191 @default.
- W4366607520 cites W4210806851 @default.
- W4366607520 doi "https://doi.org/10.1109/icbda57405.2023.10104736" @default.
- W4366607520 hasPublicationYear "2023" @default.
- W4366607520 type Work @default.
- W4366607520 citedByCount "0" @default.
- W4366607520 crossrefType "proceedings-article" @default.
- W4366607520 hasAuthorship W4366607520A5052377890 @default.
- W4366607520 hasAuthorship W4366607520A5063696766 @default.
- W4366607520 hasConcept C111919701 @default.
- W4366607520 hasConcept C119857082 @default.
- W4366607520 hasConcept C120314980 @default.
- W4366607520 hasConcept C127162648 @default.
- W4366607520 hasConcept C127413603 @default.
- W4366607520 hasConcept C138236772 @default.
- W4366607520 hasConcept C154945302 @default.
- W4366607520 hasConcept C15744967 @default.
- W4366607520 hasConcept C162307627 @default.
- W4366607520 hasConcept C19417346 @default.
- W4366607520 hasConcept C2776257435 @default.
- W4366607520 hasConcept C2778562939 @default.
- W4366607520 hasConcept C2779582901 @default.
- W4366607520 hasConcept C2992525071 @default.
- W4366607520 hasConcept C31258907 @default.
- W4366607520 hasConcept C41008148 @default.
- W4366607520 hasConcept C62611344 @default.
- W4366607520 hasConcept C66938386 @default.
- W4366607520 hasConcept C79974875 @default.
- W4366607520 hasConcept C81917197 @default.
- W4366607520 hasConceptScore W4366607520C111919701 @default.
- W4366607520 hasConceptScore W4366607520C119857082 @default.
- W4366607520 hasConceptScore W4366607520C120314980 @default.
- W4366607520 hasConceptScore W4366607520C127162648 @default.
- W4366607520 hasConceptScore W4366607520C127413603 @default.
- W4366607520 hasConceptScore W4366607520C138236772 @default.
- W4366607520 hasConceptScore W4366607520C154945302 @default.
- W4366607520 hasConceptScore W4366607520C15744967 @default.
- W4366607520 hasConceptScore W4366607520C162307627 @default.
- W4366607520 hasConceptScore W4366607520C19417346 @default.
- W4366607520 hasConceptScore W4366607520C2776257435 @default.
- W4366607520 hasConceptScore W4366607520C2778562939 @default.
- W4366607520 hasConceptScore W4366607520C2779582901 @default.
- W4366607520 hasConceptScore W4366607520C2992525071 @default.
- W4366607520 hasConceptScore W4366607520C31258907 @default.
- W4366607520 hasConceptScore W4366607520C41008148 @default.
- W4366607520 hasConceptScore W4366607520C62611344 @default.
- W4366607520 hasConceptScore W4366607520C66938386 @default.
- W4366607520 hasConceptScore W4366607520C79974875 @default.
- W4366607520 hasConceptScore W4366607520C81917197 @default.
- W4366607520 hasLocation W43666075201 @default.
- W4366607520 hasOpenAccess W4366607520 @default.
- W4366607520 hasPrimaryLocation W43666075201 @default.
- W4366607520 hasRelatedWork W1485627940 @default.
- W4366607520 hasRelatedWork W2131630752 @default.
- W4366607520 hasRelatedWork W2283409396 @default.
- W4366607520 hasRelatedWork W2987612943 @default.
- W4366607520 hasRelatedWork W3160851275 @default.
- W4366607520 hasRelatedWork W4226453210 @default.
- W4366607520 hasRelatedWork W4310658854 @default.
- W4366607520 hasRelatedWork W4312712074 @default.
- W4366607520 hasRelatedWork W4313656027 @default.
- W4366607520 hasRelatedWork W4320067866 @default.
- W4366607520 isParatext "false" @default.
- W4366607520 isRetracted "false" @default.
- W4366607520 workType "article" @default.