Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366608160> ?p ?o ?g. }
- W4366608160 endingPage "116046" @default.
- W4366608160 startingPage "116046" @default.
- W4366608160 abstract "We develop a fully data-driven model of anisotropic finite viscoelasticity using neural ordinary differential equations as building blocks. We replace the Helmholtz free energy function and the dissipation potential with data-driven functions that a priori satisfy physics-based constraints such as objectivity and the second law of thermodynamics. Our approach enables modeling viscoelastic behavior of materials under arbitrary loads in three-dimensions even with large deformations and large deviations from the thermodynamic equilibrium. The data-driven nature of the governing potentials endows the model with much needed flexibility in modeling the viscoelastic behavior of a wide class of materials. We train the model using stress–strain data from biological and synthetic materials including human brain tissue, blood clots, natural rubber and human myocardium and show that the data-driven method outperforms traditional, closed-form models of viscoelasticity." @default.
- W4366608160 created "2023-04-23" @default.
- W4366608160 creator A5013146110 @default.
- W4366608160 creator A5014059790 @default.
- W4366608160 creator A5031020033 @default.
- W4366608160 creator A5041999718 @default.
- W4366608160 date "2023-06-01" @default.
- W4366608160 modified "2023-10-16" @default.
- W4366608160 title "Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations" @default.
- W4366608160 cites W1979701617 @default.
- W4366608160 cites W1982927409 @default.
- W4366608160 cites W1990939959 @default.
- W4366608160 cites W2039194295 @default.
- W4366608160 cites W2046930772 @default.
- W4366608160 cites W2076410414 @default.
- W4366608160 cites W2090958040 @default.
- W4366608160 cites W2101843834 @default.
- W4366608160 cites W2165814880 @default.
- W4366608160 cites W2288205418 @default.
- W4366608160 cites W2625435263 @default.
- W4366608160 cites W2707019346 @default.
- W4366608160 cites W2759489676 @default.
- W4366608160 cites W2893863232 @default.
- W4366608160 cites W2929771623 @default.
- W4366608160 cites W2977523652 @default.
- W4366608160 cites W2999081549 @default.
- W4366608160 cites W3041771560 @default.
- W4366608160 cites W3086358797 @default.
- W4366608160 cites W3128525312 @default.
- W4366608160 cites W3157127629 @default.
- W4366608160 cites W3160590156 @default.
- W4366608160 cites W3164263988 @default.
- W4366608160 cites W3170733857 @default.
- W4366608160 cites W3179579813 @default.
- W4366608160 cites W3188644181 @default.
- W4366608160 cites W3194035015 @default.
- W4366608160 cites W3199752695 @default.
- W4366608160 cites W3215085381 @default.
- W4366608160 cites W4214813942 @default.
- W4366608160 cites W4285384816 @default.
- W4366608160 cites W4296378949 @default.
- W4366608160 cites W4319001247 @default.
- W4366608160 cites W4366608160 @default.
- W4366608160 cites W844253406 @default.
- W4366608160 doi "https://doi.org/10.1016/j.cma.2023.116046" @default.
- W4366608160 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37426992" @default.
- W4366608160 hasPublicationYear "2023" @default.
- W4366608160 type Work @default.
- W4366608160 citedByCount "4" @default.
- W4366608160 countsByYear W43666081602023 @default.
- W4366608160 crossrefType "journal-article" @default.
- W4366608160 hasAuthorship W4366608160A5013146110 @default.
- W4366608160 hasAuthorship W4366608160A5014059790 @default.
- W4366608160 hasAuthorship W4366608160A5031020033 @default.
- W4366608160 hasAuthorship W4366608160A5041999718 @default.
- W4366608160 hasBestOaLocation W43666081602 @default.
- W4366608160 hasConcept C121332964 @default.
- W4366608160 hasConcept C121864883 @default.
- W4366608160 hasConcept C134306372 @default.
- W4366608160 hasConcept C135402231 @default.
- W4366608160 hasConcept C154945302 @default.
- W4366608160 hasConcept C186541917 @default.
- W4366608160 hasConcept C27592594 @default.
- W4366608160 hasConcept C28826006 @default.
- W4366608160 hasConcept C33923547 @default.
- W4366608160 hasConcept C41008148 @default.
- W4366608160 hasConcept C50644808 @default.
- W4366608160 hasConcept C51544822 @default.
- W4366608160 hasConcept C78045399 @default.
- W4366608160 hasConcept C97355855 @default.
- W4366608160 hasConceptScore W4366608160C121332964 @default.
- W4366608160 hasConceptScore W4366608160C121864883 @default.
- W4366608160 hasConceptScore W4366608160C134306372 @default.
- W4366608160 hasConceptScore W4366608160C135402231 @default.
- W4366608160 hasConceptScore W4366608160C154945302 @default.
- W4366608160 hasConceptScore W4366608160C186541917 @default.
- W4366608160 hasConceptScore W4366608160C27592594 @default.
- W4366608160 hasConceptScore W4366608160C28826006 @default.
- W4366608160 hasConceptScore W4366608160C33923547 @default.
- W4366608160 hasConceptScore W4366608160C41008148 @default.
- W4366608160 hasConceptScore W4366608160C50644808 @default.
- W4366608160 hasConceptScore W4366608160C51544822 @default.
- W4366608160 hasConceptScore W4366608160C78045399 @default.
- W4366608160 hasConceptScore W4366608160C97355855 @default.
- W4366608160 hasFunder F4320306076 @default.
- W4366608160 hasFunder F4320337362 @default.
- W4366608160 hasFunder F4320337391 @default.
- W4366608160 hasLocation W43666081601 @default.
- W4366608160 hasLocation W43666081602 @default.
- W4366608160 hasLocation W43666081603 @default.
- W4366608160 hasLocation W43666081604 @default.
- W4366608160 hasOpenAccess W4366608160 @default.
- W4366608160 hasPrimaryLocation W43666081601 @default.
- W4366608160 hasRelatedWork W1973489891 @default.
- W4366608160 hasRelatedWork W2043671984 @default.
- W4366608160 hasRelatedWork W2255703620 @default.
- W4366608160 hasRelatedWork W2347486132 @default.
- W4366608160 hasRelatedWork W2517352629 @default.