Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366608319> ?p ?o ?g. }
- W4366608319 endingPage "116132" @default.
- W4366608319 startingPage "116132" @default.
- W4366608319 abstract "Precise and rapid assessment of seismic damage to buildings is critical for urban regions. To address this challenge, this study proposes QuakeCityNet (QCNet-M-N)- a model with flexible configurations of M encoding stages and N embedding convolution operations for exact pixel-level recognition of earthquake-damaged buildings using unmanned aerial vehicle (UAV) images. A novel loss function, geometric consistency enhanced (GCE) loss, is designed to focus on the building regions and local boundaries, taking into account the geometrical constraints of split line length, curvature, and area. Test results indicate that the proposed QCNet model can achieve robust and stable segmentation accuracy under diverse weather conditions, such as abnormal illumination, rain, and fog. Moreover, the utilization of GCE loss significantly reduces the false-positive small-region noise while preserving overall geometrical shapes. Finally, an application of seismic assessment is conducted in Beichuan county to demonstrate the effectiveness of the proposed method." @default.
- W4366608319 created "2023-04-23" @default.
- W4366608319 creator A5013206161 @default.
- W4366608319 creator A5034895739 @default.
- W4366608319 creator A5051040399 @default.
- W4366608319 creator A5051338981 @default.
- W4366608319 creator A5066602975 @default.
- W4366608319 creator A5067793699 @default.
- W4366608319 creator A5079594267 @default.
- W4366608319 date "2023-07-01" @default.
- W4366608319 modified "2023-10-18" @default.
- W4366608319 title "Geometric consistency enhanced deep convolutional encoder-decoder for urban seismic damage assessment by UAV images" @default.
- W4366608319 cites W1536729381 @default.
- W4366608319 cites W1860026285 @default.
- W4366608319 cites W1901129140 @default.
- W4366608319 cites W2009684145 @default.
- W4366608319 cites W2024664655 @default.
- W4366608319 cites W2027000042 @default.
- W4366608319 cites W2063488848 @default.
- W4366608319 cites W2081306264 @default.
- W4366608319 cites W2085261163 @default.
- W4366608319 cites W2095957984 @default.
- W4366608319 cites W2096552072 @default.
- W4366608319 cites W2097900287 @default.
- W4366608319 cites W2098541156 @default.
- W4366608319 cites W2098596049 @default.
- W4366608319 cites W2124386111 @default.
- W4366608319 cites W2128254161 @default.
- W4366608319 cites W2129587088 @default.
- W4366608319 cites W2412812105 @default.
- W4366608319 cites W2577761826 @default.
- W4366608319 cites W2593771152 @default.
- W4366608319 cites W2734349601 @default.
- W4366608319 cites W2767284930 @default.
- W4366608319 cites W2908753069 @default.
- W4366608319 cites W2919115771 @default.
- W4366608319 cites W2919946988 @default.
- W4366608319 cites W2921336173 @default.
- W4366608319 cites W2922073063 @default.
- W4366608319 cites W2947452436 @default.
- W4366608319 cites W2952534588 @default.
- W4366608319 cites W2963043051 @default.
- W4366608319 cites W2966168255 @default.
- W4366608319 cites W2968368194 @default.
- W4366608319 cites W2993360667 @default.
- W4366608319 cites W2994143978 @default.
- W4366608319 cites W3003890779 @default.
- W4366608319 cites W3006526286 @default.
- W4366608319 cites W3008502799 @default.
- W4366608319 cites W3019295470 @default.
- W4366608319 cites W3027557050 @default.
- W4366608319 cites W3036067204 @default.
- W4366608319 cites W3037381197 @default.
- W4366608319 cites W3045564218 @default.
- W4366608319 cites W3110031974 @default.
- W4366608319 cites W3119844298 @default.
- W4366608319 cites W3123329766 @default.
- W4366608319 cites W3128119818 @default.
- W4366608319 cites W4206836662 @default.
- W4366608319 cites W4213244977 @default.
- W4366608319 cites W4280638966 @default.
- W4366608319 doi "https://doi.org/10.1016/j.engstruct.2023.116132" @default.
- W4366608319 hasPublicationYear "2023" @default.
- W4366608319 type Work @default.
- W4366608319 citedByCount "1" @default.
- W4366608319 countsByYear W43666083192023 @default.
- W4366608319 crossrefType "journal-article" @default.
- W4366608319 hasAuthorship W4366608319A5013206161 @default.
- W4366608319 hasAuthorship W4366608319A5034895739 @default.
- W4366608319 hasAuthorship W4366608319A5051040399 @default.
- W4366608319 hasAuthorship W4366608319A5051338981 @default.
- W4366608319 hasAuthorship W4366608319A5066602975 @default.
- W4366608319 hasAuthorship W4366608319A5067793699 @default.
- W4366608319 hasAuthorship W4366608319A5079594267 @default.
- W4366608319 hasConcept C108583219 @default.
- W4366608319 hasConcept C111919701 @default.
- W4366608319 hasConcept C11413529 @default.
- W4366608319 hasConcept C115961682 @default.
- W4366608319 hasConcept C118505674 @default.
- W4366608319 hasConcept C120665830 @default.
- W4366608319 hasConcept C121332964 @default.
- W4366608319 hasConcept C14036430 @default.
- W4366608319 hasConcept C154945302 @default.
- W4366608319 hasConcept C192209626 @default.
- W4366608319 hasConcept C195065555 @default.
- W4366608319 hasConcept C2524010 @default.
- W4366608319 hasConcept C2776436953 @default.
- W4366608319 hasConcept C33923547 @default.
- W4366608319 hasConcept C41008148 @default.
- W4366608319 hasConcept C41608201 @default.
- W4366608319 hasConcept C45347329 @default.
- W4366608319 hasConcept C50644808 @default.
- W4366608319 hasConcept C78458016 @default.
- W4366608319 hasConcept C86803240 @default.
- W4366608319 hasConcept C89600930 @default.
- W4366608319 hasConcept C99498987 @default.
- W4366608319 hasConceptScore W4366608319C108583219 @default.
- W4366608319 hasConceptScore W4366608319C111919701 @default.