Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366608903> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4366608903 abstract "In recent years, the incidence of thyroid cancer has been increasing. Thyroid nodule detection is critical for both the detection and treatment of thyroid cancer. Convolutional neural networks (CNNs) have achieved good results in thyroid ultrasound image analysis tasks. However, due to the limited valid receptive field of convolutional layers, CNNs fail to capture long-range contextual dependencies, which are important for identifying thyroid nodules in ultrasound images. Transformer networks are effective in capturing long-range contextual information. Inspired by this, we propose a novel thyroid nodule detection method that combines the Swin Transformer backbone and Faster R-CNN. Specifically, an ultrasound image is first projected into a 1D sequence of embeddings, which are then fed into a hierarchical Swin Transformer. The Swin Transformer backbone extracts features at five different scales by utilizing shifted windows for the computation of self-attention. Subsequently, a feature pyramid network (FPN) is used to fuse the features from different scales. Finally, a detection head is used to predict bounding boxes and the corresponding confidence scores. Data collected from 2,680 patients were used to conduct the experiments, and the results showed that this method achieved the best mAP score of 44.8%, outperforming CNN-based baselines. In addition, we gained better sensitivity (90.5%) than the competitors. This indicates that context modeling in this model is effective for thyroid nodule detection." @default.
- W4366608903 created "2023-04-23" @default.
- W4366608903 creator A5014164893 @default.
- W4366608903 creator A5024379450 @default.
- W4366608903 creator A5034459132 @default.
- W4366608903 creator A5044396095 @default.
- W4366608903 creator A5061007704 @default.
- W4366608903 creator A5071798264 @default.
- W4366608903 creator A5072341364 @default.
- W4366608903 creator A5090588677 @default.
- W4366608903 date "2023-04-21" @default.
- W4366608903 modified "2023-10-18" @default.
- W4366608903 title "A Swin Transformer-Based Model for Thyroid Nodule Detection in Ultrasound Images" @default.
- W4366608903 doi "https://doi.org/10.3791/64480" @default.
- W4366608903 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37154577" @default.
- W4366608903 hasPublicationYear "2023" @default.
- W4366608903 type Work @default.
- W4366608903 citedByCount "0" @default.
- W4366608903 crossrefType "journal-article" @default.
- W4366608903 hasAuthorship W4366608903A5014164893 @default.
- W4366608903 hasAuthorship W4366608903A5024379450 @default.
- W4366608903 hasAuthorship W4366608903A5034459132 @default.
- W4366608903 hasAuthorship W4366608903A5044396095 @default.
- W4366608903 hasAuthorship W4366608903A5061007704 @default.
- W4366608903 hasAuthorship W4366608903A5071798264 @default.
- W4366608903 hasAuthorship W4366608903A5072341364 @default.
- W4366608903 hasAuthorship W4366608903A5090588677 @default.
- W4366608903 hasConcept C121332964 @default.
- W4366608903 hasConcept C126322002 @default.
- W4366608903 hasConcept C153180895 @default.
- W4366608903 hasConcept C154945302 @default.
- W4366608903 hasConcept C165801399 @default.
- W4366608903 hasConcept C2779022025 @default.
- W4366608903 hasConcept C31972630 @default.
- W4366608903 hasConcept C41008148 @default.
- W4366608903 hasConcept C526584372 @default.
- W4366608903 hasConcept C62520636 @default.
- W4366608903 hasConcept C66322947 @default.
- W4366608903 hasConcept C71924100 @default.
- W4366608903 hasConcept C81363708 @default.
- W4366608903 hasConceptScore W4366608903C121332964 @default.
- W4366608903 hasConceptScore W4366608903C126322002 @default.
- W4366608903 hasConceptScore W4366608903C153180895 @default.
- W4366608903 hasConceptScore W4366608903C154945302 @default.
- W4366608903 hasConceptScore W4366608903C165801399 @default.
- W4366608903 hasConceptScore W4366608903C2779022025 @default.
- W4366608903 hasConceptScore W4366608903C31972630 @default.
- W4366608903 hasConceptScore W4366608903C41008148 @default.
- W4366608903 hasConceptScore W4366608903C526584372 @default.
- W4366608903 hasConceptScore W4366608903C62520636 @default.
- W4366608903 hasConceptScore W4366608903C66322947 @default.
- W4366608903 hasConceptScore W4366608903C71924100 @default.
- W4366608903 hasConceptScore W4366608903C81363708 @default.
- W4366608903 hasIssue "194" @default.
- W4366608903 hasLocation W43666089031 @default.
- W4366608903 hasLocation W43666089032 @default.
- W4366608903 hasOpenAccess W4366608903 @default.
- W4366608903 hasPrimaryLocation W43666089031 @default.
- W4366608903 hasRelatedWork W2175746458 @default.
- W4366608903 hasRelatedWork W2732542196 @default.
- W4366608903 hasRelatedWork W2738221750 @default.
- W4366608903 hasRelatedWork W2760085659 @default.
- W4366608903 hasRelatedWork W2883200793 @default.
- W4366608903 hasRelatedWork W2912288872 @default.
- W4366608903 hasRelatedWork W2940661641 @default.
- W4366608903 hasRelatedWork W3012978760 @default.
- W4366608903 hasRelatedWork W3046789705 @default.
- W4366608903 hasRelatedWork W3093612317 @default.
- W4366608903 isParatext "false" @default.
- W4366608903 isRetracted "false" @default.
- W4366608903 workType "article" @default.