Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366608934> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4366608934 endingPage "101306" @default.
- W4366608934 startingPage "101306" @default.
- W4366608934 abstract "Electrochemists have long been dedicated to heuristically analyzing electrochemical data with meticulous visual inspection and striving to deterministically assign reaction mechanisms. We contend that machine learning (ML) offers a new approach of mechanistic analysis with high data throughput and minimal human intervention. In this perspective, we propose that the deployment of ML in electrochemistry will enable a probability-driven mechanistic analysis amid the inevitable mechanistic ambiguity. We will discuss examples of ML deployment in electroanalysis, enlist current challenges for experimentalists, and discuss ML's prospects in molecular electroanalysis. We hope such a discussion will promote and advance ML-aided mechanistic deciphering for electrochemical systems in the long run." @default.
- W4366608934 created "2023-04-23" @default.
- W4366608934 creator A5037163093 @default.
- W4366608934 creator A5083712205 @default.
- W4366608934 date "2023-06-01" @default.
- W4366608934 modified "2023-09-24" @default.
- W4366608934 title "What and how can machine learning help to decipher mechanisms in molecular electrochemistry?" @default.
- W4366608934 cites W1479835189 @default.
- W4366608934 cites W1971950282 @default.
- W4366608934 cites W2001590845 @default.
- W4366608934 cites W2005860252 @default.
- W4366608934 cites W2045848431 @default.
- W4366608934 cites W2063252402 @default.
- W4366608934 cites W2141183561 @default.
- W4366608934 cites W2614048962 @default.
- W4366608934 cites W2971347744 @default.
- W4366608934 cites W3121341757 @default.
- W4366608934 cites W3200976020 @default.
- W4366608934 cites W3202794494 @default.
- W4366608934 cites W4223512616 @default.
- W4366608934 cites W4293851105 @default.
- W4366608934 doi "https://doi.org/10.1016/j.coelec.2023.101306" @default.
- W4366608934 hasPublicationYear "2023" @default.
- W4366608934 type Work @default.
- W4366608934 citedByCount "0" @default.
- W4366608934 crossrefType "journal-article" @default.
- W4366608934 hasAuthorship W4366608934A5037163093 @default.
- W4366608934 hasAuthorship W4366608934A5083712205 @default.
- W4366608934 hasConcept C105339364 @default.
- W4366608934 hasConcept C115903868 @default.
- W4366608934 hasConcept C119857082 @default.
- W4366608934 hasConcept C12713177 @default.
- W4366608934 hasConcept C154945302 @default.
- W4366608934 hasConcept C164614171 @default.
- W4366608934 hasConcept C171250308 @default.
- W4366608934 hasConcept C192562407 @default.
- W4366608934 hasConcept C199360897 @default.
- W4366608934 hasConcept C2522767166 @default.
- W4366608934 hasConcept C2780522230 @default.
- W4366608934 hasConcept C41008148 @default.
- W4366608934 hasConcept C60644358 @default.
- W4366608934 hasConcept C86803240 @default.
- W4366608934 hasConceptScore W4366608934C105339364 @default.
- W4366608934 hasConceptScore W4366608934C115903868 @default.
- W4366608934 hasConceptScore W4366608934C119857082 @default.
- W4366608934 hasConceptScore W4366608934C12713177 @default.
- W4366608934 hasConceptScore W4366608934C154945302 @default.
- W4366608934 hasConceptScore W4366608934C164614171 @default.
- W4366608934 hasConceptScore W4366608934C171250308 @default.
- W4366608934 hasConceptScore W4366608934C192562407 @default.
- W4366608934 hasConceptScore W4366608934C199360897 @default.
- W4366608934 hasConceptScore W4366608934C2522767166 @default.
- W4366608934 hasConceptScore W4366608934C2780522230 @default.
- W4366608934 hasConceptScore W4366608934C41008148 @default.
- W4366608934 hasConceptScore W4366608934C60644358 @default.
- W4366608934 hasConceptScore W4366608934C86803240 @default.
- W4366608934 hasLocation W43666089341 @default.
- W4366608934 hasOpenAccess W4366608934 @default.
- W4366608934 hasPrimaryLocation W43666089341 @default.
- W4366608934 hasRelatedWork W1966028533 @default.
- W4366608934 hasRelatedWork W2021850411 @default.
- W4366608934 hasRelatedWork W2096848550 @default.
- W4366608934 hasRelatedWork W2318525686 @default.
- W4366608934 hasRelatedWork W2371764548 @default.
- W4366608934 hasRelatedWork W2386099213 @default.
- W4366608934 hasRelatedWork W2961085424 @default.
- W4366608934 hasRelatedWork W4306674287 @default.
- W4366608934 hasRelatedWork W4312263439 @default.
- W4366608934 hasRelatedWork W4224009465 @default.
- W4366608934 hasVolume "39" @default.
- W4366608934 isParatext "false" @default.
- W4366608934 isRetracted "false" @default.
- W4366608934 workType "article" @default.