Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366608944> ?p ?o ?g. }
- W4366608944 endingPage "109781" @default.
- W4366608944 startingPage "109781" @default.
- W4366608944 abstract "In the Energy-Harvesting Wireless Body Area Networks (EH-WBAN), one of the fundamental challenges is preserving the self-sustainability of sensors without compromising network reliability and connectivity. Determining the sleep/wake schedule of body nodes (BNs) is an efficient way to achieve self-sustainability. Sleeping nodes should be connected to at least one active node to reduce delay and keep the network connected. There are two fundamental problems with previous methods for determining BN's sleep/wake schedule: (1) BN suffers from emergency packet loss and unnecessary frequent sleeping and waking up, and (2) They do not guarantee network connectivity. Studies that have only examined connectivity in EH-WBAN also have two main issues: (1) BNs are considered homogenous in terms of energy harvesting and its consumption, (2) These methods cannot adapt to the time-varying behavior of energy-harvesting resources. This study proposes a new method for sleep/wake scheduling called Reinforcement Learning-based Sleep Scheduling (RLS2). RLS2 has the following innovative points: (1) To avoid emergency packet loss or unnecessary frequent sleeping and waking up, each BN has its own sleep/wake schedule based on its energy level and sensed data changes, (2) Lowest possible number of BNs are determined as relay nodes in each round to increase network reliability and connectivity; these BNs remain active in each round, while the others operate according to the determined schedule. In this part of the proposed method: (1) Heterogeneous BNs are considered, (2) As a first step in solving adaptability, the problem of finding the optimal active groups is formulated as a Markov decision process (MDP), followed by a Q-learning algorithm capable of learning time-varying behavior of energy harvesting resources, (3) The unavailable action space is removed to reduce the problem's complexity, (4) To achieve good Q-learning performance, a reward function based on residual energy level and neighborhood degree of BNs is defined. It can find an active group with the lowest cardinality in the current round, which is maximum in terms of the residual energy of its sensors. The performed simulations indicate the appropriate convergence of the proposed method. The results show that, on average, the proposed method improves network connectivity and energy efficiency by 50% and 31%, respectively, and reduces network delay by 27%." @default.
- W4366608944 created "2023-04-23" @default.
- W4366608944 creator A5043336931 @default.
- W4366608944 creator A5066731802 @default.
- W4366608944 date "2023-06-01" @default.
- W4366608944 modified "2023-09-24" @default.
- W4366608944 title "RLS2: An energy efficient reinforcement learning- based sleep scheduling for energy harvesting WBANs" @default.
- W4366608944 cites W2033682954 @default.
- W4366608944 cites W2083835467 @default.
- W4366608944 cites W2162800060 @default.
- W4366608944 cites W2318451197 @default.
- W4366608944 cites W2411457692 @default.
- W4366608944 cites W2606410502 @default.
- W4366608944 cites W2776422970 @default.
- W4366608944 cites W2790423762 @default.
- W4366608944 cites W2913922281 @default.
- W4366608944 cites W2917842573 @default.
- W4366608944 cites W2963842277 @default.
- W4366608944 cites W2964538841 @default.
- W4366608944 cites W2971847049 @default.
- W4366608944 cites W2981851540 @default.
- W4366608944 cites W2996343649 @default.
- W4366608944 cites W3013723131 @default.
- W4366608944 cites W3030082855 @default.
- W4366608944 cites W3030089964 @default.
- W4366608944 cites W3088315247 @default.
- W4366608944 cites W3120186061 @default.
- W4366608944 cites W3128118407 @default.
- W4366608944 cites W3149137603 @default.
- W4366608944 cites W3158841829 @default.
- W4366608944 cites W3168468440 @default.
- W4366608944 cites W3174116209 @default.
- W4366608944 cites W3203067082 @default.
- W4366608944 cites W3215200685 @default.
- W4366608944 cites W32403112 @default.
- W4366608944 cites W4213087966 @default.
- W4366608944 cites W4224314376 @default.
- W4366608944 cites W4225986186 @default.
- W4366608944 doi "https://doi.org/10.1016/j.comnet.2023.109781" @default.
- W4366608944 hasPublicationYear "2023" @default.
- W4366608944 type Work @default.
- W4366608944 citedByCount "1" @default.
- W4366608944 countsByYear W43666089442023 @default.
- W4366608944 crossrefType "journal-article" @default.
- W4366608944 hasAuthorship W4366608944A5043336931 @default.
- W4366608944 hasAuthorship W4366608944A5066731802 @default.
- W4366608944 hasConcept C111919701 @default.
- W4366608944 hasConcept C119599485 @default.
- W4366608944 hasConcept C120314980 @default.
- W4366608944 hasConcept C121332964 @default.
- W4366608944 hasConcept C126255220 @default.
- W4366608944 hasConcept C127413603 @default.
- W4366608944 hasConcept C154945302 @default.
- W4366608944 hasConcept C158379750 @default.
- W4366608944 hasConcept C163258240 @default.
- W4366608944 hasConcept C177606310 @default.
- W4366608944 hasConcept C18903297 @default.
- W4366608944 hasConcept C206729178 @default.
- W4366608944 hasConcept C24590314 @default.
- W4366608944 hasConcept C2778156585 @default.
- W4366608944 hasConcept C2780165032 @default.
- W4366608944 hasConcept C31258907 @default.
- W4366608944 hasConcept C33923547 @default.
- W4366608944 hasConcept C41008148 @default.
- W4366608944 hasConcept C43214815 @default.
- W4366608944 hasConcept C62520636 @default.
- W4366608944 hasConcept C68387754 @default.
- W4366608944 hasConcept C79403827 @default.
- W4366608944 hasConcept C86803240 @default.
- W4366608944 hasConcept C88737568 @default.
- W4366608944 hasConcept C97541855 @default.
- W4366608944 hasConceptScore W4366608944C111919701 @default.
- W4366608944 hasConceptScore W4366608944C119599485 @default.
- W4366608944 hasConceptScore W4366608944C120314980 @default.
- W4366608944 hasConceptScore W4366608944C121332964 @default.
- W4366608944 hasConceptScore W4366608944C126255220 @default.
- W4366608944 hasConceptScore W4366608944C127413603 @default.
- W4366608944 hasConceptScore W4366608944C154945302 @default.
- W4366608944 hasConceptScore W4366608944C158379750 @default.
- W4366608944 hasConceptScore W4366608944C163258240 @default.
- W4366608944 hasConceptScore W4366608944C177606310 @default.
- W4366608944 hasConceptScore W4366608944C18903297 @default.
- W4366608944 hasConceptScore W4366608944C206729178 @default.
- W4366608944 hasConceptScore W4366608944C24590314 @default.
- W4366608944 hasConceptScore W4366608944C2778156585 @default.
- W4366608944 hasConceptScore W4366608944C2780165032 @default.
- W4366608944 hasConceptScore W4366608944C31258907 @default.
- W4366608944 hasConceptScore W4366608944C33923547 @default.
- W4366608944 hasConceptScore W4366608944C41008148 @default.
- W4366608944 hasConceptScore W4366608944C43214815 @default.
- W4366608944 hasConceptScore W4366608944C62520636 @default.
- W4366608944 hasConceptScore W4366608944C68387754 @default.
- W4366608944 hasConceptScore W4366608944C79403827 @default.
- W4366608944 hasConceptScore W4366608944C86803240 @default.
- W4366608944 hasConceptScore W4366608944C88737568 @default.
- W4366608944 hasConceptScore W4366608944C97541855 @default.
- W4366608944 hasFunder F4320326795 @default.
- W4366608944 hasLocation W43666089441 @default.