Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366609854> ?p ?o ?g. }
- W4366609854 abstract "Reliable analytical modeling of the non-linear power spectrum (PS) of matter perturbations is among the chief pre-requisites for cosmological analyses from the largest sky surveys. This is especially true for the models that extend the standard general-relativity paradigm by adding the fifth force, where numerical simulations can be prohibitively expensive. Here we present a method for building accurate PS models for two modified gravity (MG) variants: namely the Hu-Sawicki $f(R)$, and the normal branch of the Dvali-Gabadadze-Porrati (nDGP) braneworld. We start by modifying the standard halo model (HM) with respect to the baseline Lambda-Cold-Dark-Matter ($Lambda$CDM) scenario, by using the HM components with specific MG extensions. We find that our $P(k)_{text{HM}}$ retains 5% accuracy only up to mildly non-linear scales ($k lesssim 0.3$ $h/,mbox{Mpc}$) when compared to PS from numerical simulations. At the same time, our HM prescription much more accurately captures the ratio $Upsilon(k) = P(k)_{text{MG}}/P(k)_{Lambda text{CDM}}$ up to non-linear scales. We show that using HM-derived $Upsilon(k)$ together with a viable non-linear $Lambda$CDM $P(k)$ prescription (such as HALOFIT), we render a much better and more accurate PS predictions in MG. The new approach yields considerably improved performance, with modeled $P(k)_{text{MG}}$ being now accurate to within 5% all the way to non-linear scales of $k lesssim 2.5-3$ $h/,mbox{Mpc}$. The magnitude of deviations from GR as fostered by these MG models is typically $mathcal{O}(10%)$ in these regimes. Therefore reaching 5% PS modeling is enough for forecasting constraints on modern-era cosmological observables." @default.
- W4366609854 created "2023-04-23" @default.
- W4366609854 creator A5029121397 @default.
- W4366609854 creator A5052822241 @default.
- W4366609854 creator A5087908428 @default.
- W4366609854 date "2023-04-21" @default.
- W4366609854 modified "2023-10-16" @default.
- W4366609854 title "Improved analytical modeling of the nonlinear power spectrum in modified gravity cosmologies" @default.
- W4366609854 cites W1481932901 @default.
- W4366609854 cites W1492154955 @default.
- W4366609854 cites W1521806406 @default.
- W4366609854 cites W1839233296 @default.
- W4366609854 cites W1937900445 @default.
- W4366609854 cites W1939864003 @default.
- W4366609854 cites W1944901286 @default.
- W4366609854 cites W1973368884 @default.
- W4366609854 cites W1981605940 @default.
- W4366609854 cites W1982533357 @default.
- W4366609854 cites W1986015707 @default.
- W4366609854 cites W1986299038 @default.
- W4366609854 cites W1988545297 @default.
- W4366609854 cites W1989589910 @default.
- W4366609854 cites W1991042102 @default.
- W4366609854 cites W2000124480 @default.
- W4366609854 cites W2003182532 @default.
- W4366609854 cites W2004188331 @default.
- W4366609854 cites W2009693236 @default.
- W4366609854 cites W2011748078 @default.
- W4366609854 cites W2016741569 @default.
- W4366609854 cites W2018719255 @default.
- W4366609854 cites W2027002007 @default.
- W4366609854 cites W2027853886 @default.
- W4366609854 cites W2034231122 @default.
- W4366609854 cites W2039602465 @default.
- W4366609854 cites W2039911906 @default.
- W4366609854 cites W2042266745 @default.
- W4366609854 cites W2043137394 @default.
- W4366609854 cites W2043908961 @default.
- W4366609854 cites W2049667056 @default.
- W4366609854 cites W2053904470 @default.
- W4366609854 cites W2064377583 @default.
- W4366609854 cites W2068692692 @default.
- W4366609854 cites W2073163146 @default.
- W4366609854 cites W2094637737 @default.
- W4366609854 cites W2095266808 @default.
- W4366609854 cites W2095386948 @default.
- W4366609854 cites W2099259849 @default.
- W4366609854 cites W2101568531 @default.
- W4366609854 cites W2117363750 @default.
- W4366609854 cites W2117592896 @default.
- W4366609854 cites W2117631690 @default.
- W4366609854 cites W2118852914 @default.
- W4366609854 cites W2121862896 @default.
- W4366609854 cites W2121991715 @default.
- W4366609854 cites W2124028531 @default.
- W4366609854 cites W2143513913 @default.
- W4366609854 cites W2166436681 @default.
- W4366609854 cites W2168347440 @default.
- W4366609854 cites W2170327775 @default.
- W4366609854 cites W2170857649 @default.
- W4366609854 cites W2171317216 @default.
- W4366609854 cites W2172444365 @default.
- W4366609854 cites W2248193482 @default.
- W4366609854 cites W2252795400 @default.
- W4366609854 cites W2253235198 @default.
- W4366609854 cites W2262580840 @default.
- W4366609854 cites W2308926591 @default.
- W4366609854 cites W2558093603 @default.
- W4366609854 cites W2567128823 @default.
- W4366609854 cites W2594629206 @default.
- W4366609854 cites W2594987253 @default.
- W4366609854 cites W2606994111 @default.
- W4366609854 cites W2765081049 @default.
- W4366609854 cites W2787823717 @default.
- W4366609854 cites W2803112542 @default.
- W4366609854 cites W2809330029 @default.
- W4366609854 cites W2809682355 @default.
- W4366609854 cites W2811123184 @default.
- W4366609854 cites W2905272717 @default.
- W4366609854 cites W2912867940 @default.
- W4366609854 cites W2949601350 @default.
- W4366609854 cites W2982366410 @default.
- W4366609854 cites W3002311826 @default.
- W4366609854 cites W3016968766 @default.
- W4366609854 cites W3022440218 @default.
- W4366609854 cites W3037060671 @default.
- W4366609854 cites W3037489893 @default.
- W4366609854 cites W3043102132 @default.
- W4366609854 cites W3083328646 @default.
- W4366609854 cites W3089789593 @default.
- W4366609854 cites W3090954784 @default.
- W4366609854 cites W3097984739 @default.
- W4366609854 cites W3098140820 @default.
- W4366609854 cites W3098514825 @default.
- W4366609854 cites W3098795465 @default.
- W4366609854 cites W3099582894 @default.
- W4366609854 cites W3100138809 @default.
- W4366609854 cites W3100446834 @default.
- W4366609854 cites W3100514957 @default.
- W4366609854 cites W3101537146 @default.