Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366684940> ?p ?o ?g. }
- W4366684940 endingPage "893" @default.
- W4366684940 startingPage "893" @default.
- W4366684940 abstract "For the Siamese network-based trackers utilizing modern deep feature extraction networks without taking full advantage of the different levels of features, tracking drift is prone to occur in aerial scenarios, such as target occlusion, scale variation, and low-resolution target tracking. Additionally, the accuracy is low in challenging scenarios of visual tracking, which is due to the imperfect utilization of features. To improve the performance of the existing Siamese tracker in the above-mentioned challenging scenes, we propose a Siamese tracker based on Transformer multi-level feature enhancement with a hierarchical attention strategy. The saliency of the extracted features is enhanced by the process of Transformer Multi-level Enhancement; the application of the hierarchical attention strategy makes the tracker adaptively notice the target region information and improve the tracking performance in challenging aerial scenarios. Meanwhile, we conducted extensive experiments and qualitative or quantitative discussions on UVA123, UAV20L, and OTB100 datasets. Finally, the experimental results show that our SiamHAS performs favorably against several state-of-the-art trackers in these challenging scenarios." @default.
- W4366684940 created "2023-04-24" @default.
- W4366684940 creator A5007348590 @default.
- W4366684940 creator A5019411286 @default.
- W4366684940 creator A5036665976 @default.
- W4366684940 creator A5067312355 @default.
- W4366684940 creator A5072331448 @default.
- W4366684940 date "2023-04-21" @default.
- W4366684940 modified "2023-09-30" @default.
- W4366684940 title "SiamHAS: Siamese Tracker with Hierarchical Attention Strategy for Aerial Tracking" @default.
- W4366684940 cites W1536680647 @default.
- W4366684940 cites W1964846093 @default.
- W4366684940 cites W2089961441 @default.
- W4366684940 cites W2108598243 @default.
- W4366684940 cites W2144248397 @default.
- W4366684940 cites W2151467788 @default.
- W4366684940 cites W2154889144 @default.
- W4366684940 cites W2157103885 @default.
- W4366684940 cites W2194775991 @default.
- W4366684940 cites W2211629196 @default.
- W4366684940 cites W2408241409 @default.
- W4366684940 cites W2518876086 @default.
- W4366684940 cites W2776035257 @default.
- W4366684940 cites W2799058067 @default.
- W4366684940 cites W2884585870 @default.
- W4366684940 cites W2886910176 @default.
- W4366684940 cites W2890882065 @default.
- W4366684940 cites W2898200825 @default.
- W4366684940 cites W2899423466 @default.
- W4366684940 cites W2904713931 @default.
- W4366684940 cites W2955058313 @default.
- W4366684940 cites W2955747520 @default.
- W4366684940 cites W2963534981 @default.
- W4366684940 cites W2964423614 @default.
- W4366684940 cites W2964789461 @default.
- W4366684940 cites W2998434318 @default.
- W4366684940 cites W3035460038 @default.
- W4366684940 cites W3035511673 @default.
- W4366684940 cites W3035571898 @default.
- W4366684940 cites W3106728613 @default.
- W4366684940 cites W3119004978 @default.
- W4366684940 cites W3133741906 @default.
- W4366684940 cites W3139921887 @default.
- W4366684940 cites W3146366485 @default.
- W4366684940 cites W3150051545 @default.
- W4366684940 cites W3169909246 @default.
- W4366684940 cites W3172670627 @default.
- W4366684940 cites W3196164986 @default.
- W4366684940 cites W3203510176 @default.
- W4366684940 cites W3205280353 @default.
- W4366684940 cites W3212386989 @default.
- W4366684940 cites W3212604410 @default.
- W4366684940 cites W3217327548 @default.
- W4366684940 cites W4214513770 @default.
- W4366684940 cites W4221090720 @default.
- W4366684940 cites W4283689005 @default.
- W4366684940 cites W4310172993 @default.
- W4366684940 cites W4310979108 @default.
- W4366684940 doi "https://doi.org/10.3390/mi14040893" @default.
- W4366684940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37421126" @default.
- W4366684940 hasPublicationYear "2023" @default.
- W4366684940 type Work @default.
- W4366684940 citedByCount "0" @default.
- W4366684940 crossrefType "journal-article" @default.
- W4366684940 hasAuthorship W4366684940A5007348590 @default.
- W4366684940 hasAuthorship W4366684940A5019411286 @default.
- W4366684940 hasAuthorship W4366684940A5036665976 @default.
- W4366684940 hasAuthorship W4366684940A5067312355 @default.
- W4366684940 hasAuthorship W4366684940A5072331448 @default.
- W4366684940 hasBestOaLocation W43666849401 @default.
- W4366684940 hasConcept C119599485 @default.
- W4366684940 hasConcept C127413603 @default.
- W4366684940 hasConcept C153180895 @default.
- W4366684940 hasConcept C154945302 @default.
- W4366684940 hasConcept C15744967 @default.
- W4366684940 hasConcept C165801399 @default.
- W4366684940 hasConcept C19417346 @default.
- W4366684940 hasConcept C2775936607 @default.
- W4366684940 hasConcept C31972630 @default.
- W4366684940 hasConcept C41008148 @default.
- W4366684940 hasConcept C52622490 @default.
- W4366684940 hasConcept C56461940 @default.
- W4366684940 hasConcept C57501372 @default.
- W4366684940 hasConcept C66322947 @default.
- W4366684940 hasConceptScore W4366684940C119599485 @default.
- W4366684940 hasConceptScore W4366684940C127413603 @default.
- W4366684940 hasConceptScore W4366684940C153180895 @default.
- W4366684940 hasConceptScore W4366684940C154945302 @default.
- W4366684940 hasConceptScore W4366684940C15744967 @default.
- W4366684940 hasConceptScore W4366684940C165801399 @default.
- W4366684940 hasConceptScore W4366684940C19417346 @default.
- W4366684940 hasConceptScore W4366684940C2775936607 @default.
- W4366684940 hasConceptScore W4366684940C31972630 @default.
- W4366684940 hasConceptScore W4366684940C41008148 @default.
- W4366684940 hasConceptScore W4366684940C52622490 @default.
- W4366684940 hasConceptScore W4366684940C56461940 @default.
- W4366684940 hasConceptScore W4366684940C57501372 @default.
- W4366684940 hasConceptScore W4366684940C66322947 @default.