Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366688259> ?p ?o ?g. }
- W4366688259 endingPage "3567" @default.
- W4366688259 startingPage "3567" @default.
- W4366688259 abstract "In this paper, a set of best practice data sharing guidelines for wind turbine fault detection model evaluation is developed, which can help practitioners overcome the main challenges of digitalisation. Digitalisation is one of the key drivers for reducing costs and risks over the whole wind energy project life cycle. One of the largest challenges in successfully implementing digitalisation is the lack of data sharing and collaboration between organisations in the sector. In order to overcome this challenge, a new collaboration framework called WeDoWind was developed in recent work. The main innovation of this framework is the way it creates tangible incentives to motivate and empower different types of people from all over the world to share data and knowledge in practice. In this present paper, the challenges related to comparing and evaluating different SCADA-data-based wind turbine fault detection models are investigated by carrying out a new case study, the “WinJi Gearbox Fault Detection Challenge”, based on the WeDoWind framework. A total of six new solutions were submitted to the challenge, and a comparison and evaluation of the results show that, in general, some of the approaches (Particle Swarm Optimisation algorithm for constructing health indicators, performance monitoring using Deep Neural Networks, Combined Ward Hierarchical Clustering and Novelty Detection with Local Outlier Factor and Time-to-failure prediction using Random Forest Regression) appear to exhibit high potential to reach the goals of the Challenge. However, there are a number of concrete things that would have to have been done by the Challenge providers and the Challenge moderators in order to ensure success. This includes enabling access to more details of the different failure types, access to multiple data sets from more wind turbines experiencing gearbox failure, provision of a model or rule relating fault detection times or a remaining useful lifetime to the estimated costs for repairs, replacements and inspections, provision of a clear strategy for training and test periods in advance, as well as provision of a pre-defined template or requirements for the results. These learning outcomes are used directly to define a set of best practice data sharing guidelines for wind turbine fault detection model evaluation. The guidelines can be used by researchers in the sector in order to improve model evaluation and data sharing in the future." @default.
- W4366688259 created "2023-04-24" @default.
- W4366688259 creator A5000900352 @default.
- W4366688259 creator A5019013740 @default.
- W4366688259 creator A5019661834 @default.
- W4366688259 creator A5020252362 @default.
- W4366688259 creator A5035373577 @default.
- W4366688259 creator A5060010145 @default.
- W4366688259 creator A5060472610 @default.
- W4366688259 creator A5071900002 @default.
- W4366688259 creator A5072291754 @default.
- W4366688259 creator A5082809778 @default.
- W4366688259 date "2023-04-20" @default.
- W4366688259 modified "2023-09-30" @default.
- W4366688259 title "Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation" @default.
- W4366688259 cites W1979815511 @default.
- W4366688259 cites W2016381774 @default.
- W4366688259 cites W2058925981 @default.
- W4366688259 cites W2060512336 @default.
- W4366688259 cites W2066349454 @default.
- W4366688259 cites W2076063813 @default.
- W4366688259 cites W2086913204 @default.
- W4366688259 cites W2106479238 @default.
- W4366688259 cites W2107133805 @default.
- W4366688259 cites W2120871928 @default.
- W4366688259 cites W2137104525 @default.
- W4366688259 cites W2145071552 @default.
- W4366688259 cites W2255738116 @default.
- W4366688259 cites W2284910918 @default.
- W4366688259 cites W2290402024 @default.
- W4366688259 cites W2302501749 @default.
- W4366688259 cites W2517756674 @default.
- W4366688259 cites W2529438039 @default.
- W4366688259 cites W2543580944 @default.
- W4366688259 cites W2591934927 @default.
- W4366688259 cites W2779159842 @default.
- W4366688259 cites W2816854051 @default.
- W4366688259 cites W2888940554 @default.
- W4366688259 cites W2897250207 @default.
- W4366688259 cites W29115556 @default.
- W4366688259 cites W2911964244 @default.
- W4366688259 cites W2942443328 @default.
- W4366688259 cites W2971840633 @default.
- W4366688259 cites W3018215136 @default.
- W4366688259 cites W3035303910 @default.
- W4366688259 cites W3093949277 @default.
- W4366688259 cites W3129166376 @default.
- W4366688259 cites W3138237914 @default.
- W4366688259 cites W3171161766 @default.
- W4366688259 cites W3193849607 @default.
- W4366688259 cites W4206256813 @default.
- W4366688259 cites W4229451556 @default.
- W4366688259 cites W4254182148 @default.
- W4366688259 cites W4287010317 @default.
- W4366688259 cites W4289515471 @default.
- W4366688259 cites W4295774657 @default.
- W4366688259 cites W4296371377 @default.
- W4366688259 cites W4303982360 @default.
- W4366688259 cites W4315796995 @default.
- W4366688259 cites W4318159346 @default.
- W4366688259 doi "https://doi.org/10.3390/en16083567" @default.
- W4366688259 hasPublicationYear "2023" @default.
- W4366688259 type Work @default.
- W4366688259 citedByCount "0" @default.
- W4366688259 crossrefType "journal-article" @default.
- W4366688259 hasAuthorship W4366688259A5000900352 @default.
- W4366688259 hasAuthorship W4366688259A5019013740 @default.
- W4366688259 hasAuthorship W4366688259A5019661834 @default.
- W4366688259 hasAuthorship W4366688259A5020252362 @default.
- W4366688259 hasAuthorship W4366688259A5035373577 @default.
- W4366688259 hasAuthorship W4366688259A5060010145 @default.
- W4366688259 hasAuthorship W4366688259A5060472610 @default.
- W4366688259 hasAuthorship W4366688259A5071900002 @default.
- W4366688259 hasAuthorship W4366688259A5072291754 @default.
- W4366688259 hasAuthorship W4366688259A5082809778 @default.
- W4366688259 hasBestOaLocation W43666882591 @default.
- W4366688259 hasConcept C113863187 @default.
- W4366688259 hasConcept C119599485 @default.
- W4366688259 hasConcept C119857082 @default.
- W4366688259 hasConcept C124101348 @default.
- W4366688259 hasConcept C127413603 @default.
- W4366688259 hasConcept C138885662 @default.
- W4366688259 hasConcept C162324750 @default.
- W4366688259 hasConcept C175444787 @default.
- W4366688259 hasConcept C195094911 @default.
- W4366688259 hasConcept C27206212 @default.
- W4366688259 hasConcept C2778449969 @default.
- W4366688259 hasConcept C2778738651 @default.
- W4366688259 hasConcept C29122968 @default.
- W4366688259 hasConcept C41008148 @default.
- W4366688259 hasConcept C78519656 @default.
- W4366688259 hasConcept C78600449 @default.
- W4366688259 hasConcept C85617194 @default.
- W4366688259 hasConceptScore W4366688259C113863187 @default.
- W4366688259 hasConceptScore W4366688259C119599485 @default.
- W4366688259 hasConceptScore W4366688259C119857082 @default.
- W4366688259 hasConceptScore W4366688259C124101348 @default.
- W4366688259 hasConceptScore W4366688259C127413603 @default.