Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366750857> ?p ?o ?g. }
- W4366750857 endingPage "102831" @default.
- W4366750857 startingPage "102831" @default.
- W4366750857 abstract "The development of cerebrovascular disease is tightly coupled to regional changes in intracranial flow and relative pressure. Image-based assessment using phase contrast magnetic resonance imaging has particular promise for non-invasive full-field mapping of cerebrovascular hemodynamics. However, estimations are complicated by the narrow and tortuous intracranial vasculature, with accurate image-based quantification directly dependent on sufficient spatial resolution. Further, extended scan times are required for high-resolution acquisitions, and most clinical acquisitions are performed at comparably low resolution (>1 mm) where biases have been observed with regard to the quantification of both flow and relative pressure. The aim of our study was to develop an approach for quantitative intracranial super-resolution 4D Flow MRI, with effective resolution enhancement achieved by a dedicated deep residual network, and with accurate quantification of functional relative pressures achieved by subsequent physics-informed image processing. To achieve this, our two-step approach was trained and validated in a patient-specific in-silico cohort, showing good accuracy in estimating velocity (relative error: 15.0 ± 0.1%, mean absolute error (MAE): 0.07 ± 0.06 m/s, and cosine similarity: 0.99 ± 0.06 at peak velocity) and flow (relative error: 6.6 ± 4.7%, root mean square error (RMSE): 0.56 mL/s at peak flow), and with the coupled physics-informed image analysis allowing for maintained recovery of functional relative pressure throughout the circle of Willis (relative error: 11.0 ± 7.3%, RMSE: 0.3 ± 0.2 mmHg). Furthermore, the quantitative super-resolution approach is applied to an in-vivo volunteer cohort, effectively generating intracranial flow images at <0.5 mm resolution and showing reduced low-resolution bias in relative pressure estimation. Our work thus presents a promising two-step approach to non-invasively quantify cerebrovascular hemodynamics, being applicable to dedicated clinical cohorts in the future." @default.
- W4366750857 created "2023-04-24" @default.
- W4366750857 creator A5002976204 @default.
- W4366750857 creator A5005931821 @default.
- W4366750857 creator A5014029323 @default.
- W4366750857 creator A5016749899 @default.
- W4366750857 creator A5049564403 @default.
- W4366750857 creator A5053642357 @default.
- W4366750857 creator A5071917998 @default.
- W4366750857 creator A5077252689 @default.
- W4366750857 creator A5091664481 @default.
- W4366750857 date "2023-08-01" @default.
- W4366750857 modified "2023-10-02" @default.
- W4366750857 title "Cerebrovascular super-resolution 4D Flow MRI – Sequential combination of resolution enhancement by deep learning and physics-informed image processing to non-invasively quantify intracranial velocity, flow, and relative pressure" @default.
- W4366750857 cites W1604404969 @default.
- W4366750857 cites W2008796815 @default.
- W4366750857 cites W2084164231 @default.
- W4366750857 cites W2117993799 @default.
- W4366750857 cites W2134584543 @default.
- W4366750857 cites W2146299228 @default.
- W4366750857 cites W2274953212 @default.
- W4366750857 cites W2583860532 @default.
- W4366750857 cites W2906879808 @default.
- W4366750857 cites W2918851755 @default.
- W4366750857 cites W2930287470 @default.
- W4366750857 cites W2943887789 @default.
- W4366750857 cites W2968874664 @default.
- W4366750857 cites W2973886134 @default.
- W4366750857 cites W3022091210 @default.
- W4366750857 cites W3037824222 @default.
- W4366750857 cites W3038923903 @default.
- W4366750857 cites W3086033911 @default.
- W4366750857 cites W3087333887 @default.
- W4366750857 cites W3095187049 @default.
- W4366750857 cites W3116609458 @default.
- W4366750857 cites W3162107670 @default.
- W4366750857 cites W3162963303 @default.
- W4366750857 cites W3195314339 @default.
- W4366750857 doi "https://doi.org/10.1016/j.media.2023.102831" @default.
- W4366750857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37244143" @default.
- W4366750857 hasPublicationYear "2023" @default.
- W4366750857 type Work @default.
- W4366750857 citedByCount "1" @default.
- W4366750857 countsByYear W43667508572023 @default.
- W4366750857 crossrefType "journal-article" @default.
- W4366750857 hasAuthorship W4366750857A5002976204 @default.
- W4366750857 hasAuthorship W4366750857A5005931821 @default.
- W4366750857 hasAuthorship W4366750857A5014029323 @default.
- W4366750857 hasAuthorship W4366750857A5016749899 @default.
- W4366750857 hasAuthorship W4366750857A5049564403 @default.
- W4366750857 hasAuthorship W4366750857A5053642357 @default.
- W4366750857 hasAuthorship W4366750857A5071917998 @default.
- W4366750857 hasAuthorship W4366750857A5077252689 @default.
- W4366750857 hasAuthorship W4366750857A5091664481 @default.
- W4366750857 hasConcept C105795698 @default.
- W4366750857 hasConcept C11413529 @default.
- W4366750857 hasConcept C121332964 @default.
- W4366750857 hasConcept C122383733 @default.
- W4366750857 hasConcept C126838900 @default.
- W4366750857 hasConcept C138268822 @default.
- W4366750857 hasConcept C139945424 @default.
- W4366750857 hasConcept C143409427 @default.
- W4366750857 hasConcept C154945302 @default.
- W4366750857 hasConcept C205372480 @default.
- W4366750857 hasConcept C2524010 @default.
- W4366750857 hasConcept C28396438 @default.
- W4366750857 hasConcept C33923547 @default.
- W4366750857 hasConcept C38349280 @default.
- W4366750857 hasConcept C41008148 @default.
- W4366750857 hasConcept C46141821 @default.
- W4366750857 hasConcept C71924100 @default.
- W4366750857 hasConceptScore W4366750857C105795698 @default.
- W4366750857 hasConceptScore W4366750857C11413529 @default.
- W4366750857 hasConceptScore W4366750857C121332964 @default.
- W4366750857 hasConceptScore W4366750857C122383733 @default.
- W4366750857 hasConceptScore W4366750857C126838900 @default.
- W4366750857 hasConceptScore W4366750857C138268822 @default.
- W4366750857 hasConceptScore W4366750857C139945424 @default.
- W4366750857 hasConceptScore W4366750857C143409427 @default.
- W4366750857 hasConceptScore W4366750857C154945302 @default.
- W4366750857 hasConceptScore W4366750857C205372480 @default.
- W4366750857 hasConceptScore W4366750857C2524010 @default.
- W4366750857 hasConceptScore W4366750857C28396438 @default.
- W4366750857 hasConceptScore W4366750857C33923547 @default.
- W4366750857 hasConceptScore W4366750857C38349280 @default.
- W4366750857 hasConceptScore W4366750857C41008148 @default.
- W4366750857 hasConceptScore W4366750857C46141821 @default.
- W4366750857 hasConceptScore W4366750857C71924100 @default.
- W4366750857 hasLocation W43667508571 @default.
- W4366750857 hasLocation W43667508572 @default.
- W4366750857 hasOpenAccess W4366750857 @default.
- W4366750857 hasPrimaryLocation W43667508571 @default.
- W4366750857 hasRelatedWork W1987230525 @default.
- W4366750857 hasRelatedWork W2025681766 @default.
- W4366750857 hasRelatedWork W2033525573 @default.
- W4366750857 hasRelatedWork W2063737738 @default.
- W4366750857 hasRelatedWork W2100851949 @default.
- W4366750857 hasRelatedWork W2159897444 @default.