Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366750957> ?p ?o ?g. }
- W4366750957 endingPage "120179" @default.
- W4366750957 startingPage "120179" @default.
- W4366750957 abstract "From a systems biology perspective, genes usually work collaboratively in the form of a network, e.g., cancer-related genes participate in an integrative dysfunctional pathway. Thus, feature gene selection considering the graph or network structure plays a crucial role in cancer biomarker discovery from high-throughput omics data. The network-based paradigm demonstrates that integrating gene expression data with gene networks can improve classification performances and generate more interpretable feature subsets. In this paper, we propose an embedded connected network-constrained support vector machine (CNet-SVM) method to keep the selected features in an inherent graph structure in discovering biomarker genes. Firstly, we mathematically formulate the CNet-SVM model as a convex optimization problem constrained by network connectivity inequalities and theoretically investigate the behaviors of all tuning parameters to provide search guidance on the regularization path. Secondly, to check if the genes selected by CNet-SVM could be studied as network-structured biomarkers, we conduct experiments on several simulation datasets and real-world breast cancer (BRCA) datasets to validate its classification and prediction capabilities. The results show that CNet-SVM not only maintains the sparsity and smoothness, but also considers the connectivity constraints between genes when selecting features on a prior gene–gene interaction network from omics data. Especially, CNet-SVM identifies 32 BRCA biomarker genes, which form into a connected network component and can be potentially used for BRCA diagnosis. Furthermore, the comparisons with eight feature selection-empowered SVM methods demonstrate that the easily interpretable networked feature genes discovered by CNet-SVM are more closely related to BRCA dysfunctions. Finally, we validate that the identified biomarkers achieve high prediction accuracy on external independent cohorts. All results proved that the proposed CNet-SVM method is effective in selecting connected-network-structured features and can be an alternative improvement to the current SVM models for biomarker identification from high-throughput data. The data and code are available at https://github.com/zpliulab/CNet-SVM." @default.
- W4366750957 created "2023-04-24" @default.
- W4366750957 creator A5001552700 @default.
- W4366750957 creator A5060349602 @default.
- W4366750957 date "2023-09-01" @default.
- W4366750957 modified "2023-10-04" @default.
- W4366750957 title "Biomarker discovery from high-throughput data by connected network-constrained support vector machine" @default.
- W4366750957 cites W1971376634 @default.
- W4366750957 cites W1987371344 @default.
- W4366750957 cites W1993528080 @default.
- W4366750957 cites W1996086117 @default.
- W4366750957 cites W2014360396 @default.
- W4366750957 cites W2021284777 @default.
- W4366750957 cites W2034269086 @default.
- W4366750957 cites W2041891835 @default.
- W4366750957 cites W2065341127 @default.
- W4366750957 cites W2074682976 @default.
- W4366750957 cites W2098337454 @default.
- W4366750957 cites W2100631457 @default.
- W4366750957 cites W2106398669 @default.
- W4366750957 cites W2110503722 @default.
- W4366750957 cites W2117526678 @default.
- W4366750957 cites W2120539875 @default.
- W4366750957 cites W2122825543 @default.
- W4366750957 cites W2128873464 @default.
- W4366750957 cites W2138019504 @default.
- W4366750957 cites W2143426320 @default.
- W4366750957 cites W2146681065 @default.
- W4366750957 cites W2150408365 @default.
- W4366750957 cites W2157599860 @default.
- W4366750957 cites W2161347558 @default.
- W4366750957 cites W2168775836 @default.
- W4366750957 cites W2175370850 @default.
- W4366750957 cites W2179438025 @default.
- W4366750957 cites W2300852593 @default.
- W4366750957 cites W2482586665 @default.
- W4366750957 cites W2517421365 @default.
- W4366750957 cites W2558586574 @default.
- W4366750957 cites W2734670755 @default.
- W4366750957 cites W2924119339 @default.
- W4366750957 cites W2952289102 @default.
- W4366750957 cites W2964304355 @default.
- W4366750957 cites W2990616444 @default.
- W4366750957 cites W3034750607 @default.
- W4366750957 cites W3080411526 @default.
- W4366750957 cites W3096828292 @default.
- W4366750957 cites W3105224292 @default.
- W4366750957 cites W3125597081 @default.
- W4366750957 cites W3150277333 @default.
- W4366750957 cites W3194364164 @default.
- W4366750957 cites W3203747717 @default.
- W4366750957 cites W3207353331 @default.
- W4366750957 cites W3213672441 @default.
- W4366750957 cites W4200609800 @default.
- W4366750957 cites W4205694871 @default.
- W4366750957 cites W4210605405 @default.
- W4366750957 cites W4283662269 @default.
- W4366750957 cites W4288844465 @default.
- W4366750957 cites W4290930137 @default.
- W4366750957 cites W3000439699 @default.
- W4366750957 doi "https://doi.org/10.1016/j.eswa.2023.120179" @default.
- W4366750957 hasPublicationYear "2023" @default.
- W4366750957 type Work @default.
- W4366750957 citedByCount "0" @default.
- W4366750957 crossrefType "journal-article" @default.
- W4366750957 hasAuthorship W4366750957A5001552700 @default.
- W4366750957 hasAuthorship W4366750957A5060349602 @default.
- W4366750957 hasBestOaLocation W43667509571 @default.
- W4366750957 hasConcept C104317684 @default.
- W4366750957 hasConcept C119857082 @default.
- W4366750957 hasConcept C12267149 @default.
- W4366750957 hasConcept C124101348 @default.
- W4366750957 hasConcept C124535831 @default.
- W4366750957 hasConcept C138885662 @default.
- W4366750957 hasConcept C148483581 @default.
- W4366750957 hasConcept C150194340 @default.
- W4366750957 hasConcept C154945302 @default.
- W4366750957 hasConcept C2776401178 @default.
- W4366750957 hasConcept C41008148 @default.
- W4366750957 hasConcept C41895202 @default.
- W4366750957 hasConcept C46111723 @default.
- W4366750957 hasConcept C54355233 @default.
- W4366750957 hasConcept C67339327 @default.
- W4366750957 hasConcept C86803240 @default.
- W4366750957 hasConceptScore W4366750957C104317684 @default.
- W4366750957 hasConceptScore W4366750957C119857082 @default.
- W4366750957 hasConceptScore W4366750957C12267149 @default.
- W4366750957 hasConceptScore W4366750957C124101348 @default.
- W4366750957 hasConceptScore W4366750957C124535831 @default.
- W4366750957 hasConceptScore W4366750957C138885662 @default.
- W4366750957 hasConceptScore W4366750957C148483581 @default.
- W4366750957 hasConceptScore W4366750957C150194340 @default.
- W4366750957 hasConceptScore W4366750957C154945302 @default.
- W4366750957 hasConceptScore W4366750957C2776401178 @default.
- W4366750957 hasConceptScore W4366750957C41008148 @default.
- W4366750957 hasConceptScore W4366750957C41895202 @default.
- W4366750957 hasConceptScore W4366750957C46111723 @default.
- W4366750957 hasConceptScore W4366750957C54355233 @default.