Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366752414> ?p ?o ?g. }
- W4366752414 endingPage "117067" @default.
- W4366752414 startingPage "117067" @default.
- W4366752414 abstract "The main role of precision nutrition is to personalize nutrition recommendations based not only on historical diet and phenotype data, but also on additional information that includes the genotype or gene expression, the microbiome, proteome, and metabolome of a given individual. In recent years, current advances in the field of digital technologies and data analytics (e.g. sensors, machine learning, mathematical modelling) have allowed for the development of practical and robust analytical tools in the field of personalized nutrition. This review discusses the application, utilization and role of non-destructive techniques based in vibrational spectroscopy combined with data analytics (e.g. machine learning techniques) as analytical tool in precision nutrition. Specifically, this paper focused on the analysis of metabolites and other biomarkers in biofluids other than blood (e.g. saliva, urine) using infrared and Raman spectroscopy in human nutrition applications." @default.
- W4366752414 created "2023-04-24" @default.
- W4366752414 creator A5016386809 @default.
- W4366752414 creator A5089696496 @default.
- W4366752414 date "2023-06-01" @default.
- W4366752414 modified "2023-10-02" @default.
- W4366752414 title "Possibilities on the application of vibrational spectroscopy and data analytics in precision nutrition" @default.
- W4366752414 cites W1447940712 @default.
- W4366752414 cites W1901499274 @default.
- W4366752414 cites W1974950067 @default.
- W4366752414 cites W1989866713 @default.
- W4366752414 cites W1990167351 @default.
- W4366752414 cites W2002896160 @default.
- W4366752414 cites W2020238249 @default.
- W4366752414 cites W2043740089 @default.
- W4366752414 cites W2064630668 @default.
- W4366752414 cites W2086709218 @default.
- W4366752414 cites W2096821223 @default.
- W4366752414 cites W2113136612 @default.
- W4366752414 cites W2136279246 @default.
- W4366752414 cites W2335294083 @default.
- W4366752414 cites W2520790663 @default.
- W4366752414 cites W2528491735 @default.
- W4366752414 cites W2552530019 @default.
- W4366752414 cites W2553935211 @default.
- W4366752414 cites W2574619444 @default.
- W4366752414 cites W2592334366 @default.
- W4366752414 cites W2766069545 @default.
- W4366752414 cites W2775256121 @default.
- W4366752414 cites W2803194242 @default.
- W4366752414 cites W2806157403 @default.
- W4366752414 cites W2888388085 @default.
- W4366752414 cites W2897022575 @default.
- W4366752414 cites W2905140846 @default.
- W4366752414 cites W2915519130 @default.
- W4366752414 cites W2938826237 @default.
- W4366752414 cites W2950232220 @default.
- W4366752414 cites W2963261498 @default.
- W4366752414 cites W2964116700 @default.
- W4366752414 cites W2965814954 @default.
- W4366752414 cites W2966066815 @default.
- W4366752414 cites W2966209494 @default.
- W4366752414 cites W2980480290 @default.
- W4366752414 cites W2999670921 @default.
- W4366752414 cites W3000601113 @default.
- W4366752414 cites W3007264987 @default.
- W4366752414 cites W3011711048 @default.
- W4366752414 cites W3015428172 @default.
- W4366752414 cites W3015706740 @default.
- W4366752414 cites W3037295486 @default.
- W4366752414 cites W3040683486 @default.
- W4366752414 cites W3047683575 @default.
- W4366752414 cites W3082537809 @default.
- W4366752414 cites W3084222337 @default.
- W4366752414 cites W3125029450 @default.
- W4366752414 cites W3127184272 @default.
- W4366752414 cites W3128013961 @default.
- W4366752414 cites W3133263984 @default.
- W4366752414 cites W3139737475 @default.
- W4366752414 cites W3163274300 @default.
- W4366752414 doi "https://doi.org/10.1016/j.trac.2023.117067" @default.
- W4366752414 hasPublicationYear "2023" @default.
- W4366752414 type Work @default.
- W4366752414 citedByCount "0" @default.
- W4366752414 crossrefType "journal-article" @default.
- W4366752414 hasAuthorship W4366752414A5016386809 @default.
- W4366752414 hasAuthorship W4366752414A5089696496 @default.
- W4366752414 hasConcept C124101348 @default.
- W4366752414 hasConcept C135870905 @default.
- W4366752414 hasConcept C175801342 @default.
- W4366752414 hasConcept C199360897 @default.
- W4366752414 hasConcept C202444582 @default.
- W4366752414 hasConcept C21565614 @default.
- W4366752414 hasConcept C2522767166 @default.
- W4366752414 hasConcept C33923547 @default.
- W4366752414 hasConcept C41008148 @default.
- W4366752414 hasConcept C43521106 @default.
- W4366752414 hasConcept C60644358 @default.
- W4366752414 hasConcept C70721500 @default.
- W4366752414 hasConcept C79158427 @default.
- W4366752414 hasConcept C86803240 @default.
- W4366752414 hasConcept C9652623 @default.
- W4366752414 hasConceptScore W4366752414C124101348 @default.
- W4366752414 hasConceptScore W4366752414C135870905 @default.
- W4366752414 hasConceptScore W4366752414C175801342 @default.
- W4366752414 hasConceptScore W4366752414C199360897 @default.
- W4366752414 hasConceptScore W4366752414C202444582 @default.
- W4366752414 hasConceptScore W4366752414C21565614 @default.
- W4366752414 hasConceptScore W4366752414C2522767166 @default.
- W4366752414 hasConceptScore W4366752414C33923547 @default.
- W4366752414 hasConceptScore W4366752414C41008148 @default.
- W4366752414 hasConceptScore W4366752414C43521106 @default.
- W4366752414 hasConceptScore W4366752414C60644358 @default.
- W4366752414 hasConceptScore W4366752414C70721500 @default.
- W4366752414 hasConceptScore W4366752414C79158427 @default.
- W4366752414 hasConceptScore W4366752414C86803240 @default.
- W4366752414 hasConceptScore W4366752414C9652623 @default.
- W4366752414 hasFunder F4320320984 @default.