Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366752940> ?p ?o ?g. }
- W4366752940 endingPage "120621" @default.
- W4366752940 startingPage "120621" @default.
- W4366752940 abstract "The convective heat transfer in a turbulent boundary layer (TBL) on a flat plate is enhanced using an artificial intelligence approach based on linear genetic algorithms control (LGAC). The actuator is a set of six slot jets in crossflow aligned with the freestream. An open-loop optimal periodic forcing is defined by the carrier frequency, the duty cycle and the phase difference between actuators as control parameters. The control laws are optimised with respect to the unperturbed TBL and to the actuation with a steady jet. The cost function includes the wall convective heat transfer rate and the cost of the actuation. The performance of the controller is assessed by infrared thermography and characterised also with particle image velocimetry measurements. The optimal controller yields a slightly asymmetric flow field. The LGAC algorithm converges to the same frequency and duty cycle for all the actuators. It is noted that such frequency is strikingly equal to the inverse of the characteristic travel time of large-scale turbulent structures advected within the near-wall region. The phase difference between multiple jet actuation has shown to be very relevant and the main driver of flow asymmetry. The results pinpoint the potential of machine learning control in unravelling unexplored controllers within the actuation space. Our study furthermore demonstrates the viability of employing sophisticated measurement techniques together with advanced algorithms in an experimental investigation." @default.
- W4366752940 created "2023-04-24" @default.
- W4366752940 creator A5040175837 @default.
- W4366752940 creator A5042632509 @default.
- W4366752940 creator A5043881111 @default.
- W4366752940 date "2023-07-01" @default.
- W4366752940 modified "2023-09-30" @default.
- W4366752940 title "Genetically-inspired convective heat transfer enhancement in a turbulent boundary layer" @default.
- W4366752940 cites W1882689307 @default.
- W4366752940 cites W1954793758 @default.
- W4366752940 cites W1967044910 @default.
- W4366752940 cites W1967591039 @default.
- W4366752940 cites W1968814163 @default.
- W4366752940 cites W1975136420 @default.
- W4366752940 cites W1980998330 @default.
- W4366752940 cites W2004730979 @default.
- W4366752940 cites W2020100125 @default.
- W4366752940 cites W2022878867 @default.
- W4366752940 cites W2026443020 @default.
- W4366752940 cites W2032026429 @default.
- W4366752940 cites W2038462466 @default.
- W4366752940 cites W2038711601 @default.
- W4366752940 cites W2042457194 @default.
- W4366752940 cites W2050195777 @default.
- W4366752940 cites W2062319589 @default.
- W4366752940 cites W2070601943 @default.
- W4366752940 cites W2074295499 @default.
- W4366752940 cites W2075964323 @default.
- W4366752940 cites W2079403874 @default.
- W4366752940 cites W2085351601 @default.
- W4366752940 cites W2092117179 @default.
- W4366752940 cites W2092558963 @default.
- W4366752940 cites W2093517204 @default.
- W4366752940 cites W2093956454 @default.
- W4366752940 cites W2095062552 @default.
- W4366752940 cites W2097795735 @default.
- W4366752940 cites W2114467849 @default.
- W4366752940 cites W2114533090 @default.
- W4366752940 cites W2115692920 @default.
- W4366752940 cites W2119301680 @default.
- W4366752940 cites W2132796867 @default.
- W4366752940 cites W2137678215 @default.
- W4366752940 cites W2137844208 @default.
- W4366752940 cites W2139231828 @default.
- W4366752940 cites W2145366562 @default.
- W4366752940 cites W2160660495 @default.
- W4366752940 cites W2169318966 @default.
- W4366752940 cites W2335276023 @default.
- W4366752940 cites W2517027995 @default.
- W4366752940 cites W2539509676 @default.
- W4366752940 cites W2598525754 @default.
- W4366752940 cites W2617519253 @default.
- W4366752940 cites W2618981818 @default.
- W4366752940 cites W2735755328 @default.
- W4366752940 cites W2765608888 @default.
- W4366752940 cites W2766702348 @default.
- W4366752940 cites W2787036320 @default.
- W4366752940 cites W2888317899 @default.
- W4366752940 cites W2900614159 @default.
- W4366752940 cites W2904571465 @default.
- W4366752940 cites W2905030867 @default.
- W4366752940 cites W2983719705 @default.
- W4366752940 cites W3014367045 @default.
- W4366752940 cites W3017949174 @default.
- W4366752940 cites W3022101349 @default.
- W4366752940 cites W3045905724 @default.
- W4366752940 cites W3097982101 @default.
- W4366752940 cites W3099559809 @default.
- W4366752940 cites W3101909478 @default.
- W4366752940 cites W3102140816 @default.
- W4366752940 cites W3135144629 @default.
- W4366752940 cites W3158453798 @default.
- W4366752940 cites W3161313471 @default.
- W4366752940 cites W3167678639 @default.
- W4366752940 cites W3169603838 @default.
- W4366752940 cites W3197080633 @default.
- W4366752940 cites W4205477196 @default.
- W4366752940 cites W4205566047 @default.
- W4366752940 cites W4221154089 @default.
- W4366752940 cites W4281743271 @default.
- W4366752940 cites W4296777447 @default.
- W4366752940 cites W4308499727 @default.
- W4366752940 doi "https://doi.org/10.1016/j.applthermaleng.2023.120621" @default.
- W4366752940 hasPublicationYear "2023" @default.
- W4366752940 type Work @default.
- W4366752940 citedByCount "1" @default.
- W4366752940 countsByYear W43667529402023 @default.
- W4366752940 crossrefType "journal-article" @default.
- W4366752940 hasAuthorship W4366752940A5040175837 @default.
- W4366752940 hasAuthorship W4366752940A5042632509 @default.
- W4366752940 hasAuthorship W4366752940A5043881111 @default.
- W4366752940 hasBestOaLocation W43667529401 @default.
- W4366752940 hasConcept C111603439 @default.
- W4366752940 hasConcept C119599485 @default.
- W4366752940 hasConcept C121332964 @default.
- W4366752940 hasConcept C127413603 @default.
- W4366752940 hasConcept C133386390 @default.
- W4366752940 hasConcept C154945302 @default.